Citation: HU Xiao-fei, GUO Qing-hua, LIU Xia, GONG Yan, YU Guang-suo. Ash fusion and viscosity behavior of coal ash with high content of Fe and Ca[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 769-776. shu

Ash fusion and viscosity behavior of coal ash with high content of Fe and Ca

  • Corresponding author: YU Guang-suo, gsyu@ecust.edu.cn
  • Received Date: 27 January 2016
    Revised Date: 26 April 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 51406056the Fundamental Research Funds for the Central Universities 222201514336the Shanghai Pujiang Program 15PJD011the Fundamental Research Funds for the Central Universities 222201414030

Figures(7)

  • Jinjitan coal and sand were respectively chosen as raw material and additive. Under the different proportion of additive, ash fusion and viscosity behavior of coal ash with high contents of Fe and Ca were studied. X-ray diffraction (XRD), high-temperature stage microscope (HTSM) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) were applied to investigate effect of mineral transformation on ash fusion and viscosity behavior of coal ash. The results show that ash fusion temperature decreases at first and then increases with the rising content of additive, and formation of low temperature eutectic augite is the main reason for the lower ash fusion temperature. The viscosity fluctuation is related to the formation of gehlenite, and the precipitation of iron-bearing minerals causes significant increase of viscosity. The temperature of critical viscosity (tcv) of coal ash slag drops dramatically and the slag type transforms from crystal slag to glass slag with addition of sand. Distribution of Fe and Ca shows obvious different in raw coal slag, but additive makes it become more uniform, which is in agreement with the viscosity curve. Moreover, the industrial results prove that sand is an effective additive to improve the viscosity behavior of coal ash with high content of Fe and Ca.
  • 加载中
    1. [1]

      YU Guang-suo, NIU Miao-ren, WANG Yi-fei, LIANG Qin-feng, YU Zun-hong. Application status and development tendency of coal entrained-bed gasification[J]. Mod Chem Ind, 2004,24(5):23-26.  

    2. [2]

      PATTERSON J H, HURST H J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel, 2000,79(13):1671-1678. doi: 10.1016/S0016-2361(00)00032-6

    3. [3]

      VAN DYK J C, BENSON S A, LAUMB M L, WAANDERS B. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009,88(6):1057-1063. doi: 10.1016/j.fuel.2008.11.034

    4. [4]

      ZHOU Zhi-jie, LI De-xia, LIU Xia, YU Guang-suo. Characteristic of cohesiveness-temperature of coal molten ash and its adaptability to entrained flow gasifier[J]. CIESC J, 2012,63(10):3243-3254.  

    5. [5]

      SONG W J, DONG Y H, WU Y Q, ZHU Z B. Prediction of temperature of critical viscosity for coal ash slag[J]. AIChE J, 2011,57(10):2921-2925. doi: 10.1002/aic.v57.10

    6. [6]

      SONG W J, SUN Y M, WU Y Q, ZHU Z B. Measurement and simulation of flow properties of coal ash slag in coal gasification[J]. AIChE J, 2011,57(3):801-818. doi: 10.1002/aic.12293

    7. [7]

      KONG L X, BAI J, LI W, LI X M, BAI Z Q, GUO Z X, LI H Z. The internal and external factor on coal ash slag viscosity at high temperatures, Part 1: Effect of cooling rate on slag viscosity, measured continuously[J]. Fuel, 2015,158:968-975. doi: 10.1016/j.fuel.2015.02.055

    8. [8]

      KONG L X, BAI J, LI W, BAI Z Q, GUO Z X, LI H Z. The internal and external factor on coal ash slag viscosity at high temperatures, Part 2: Effect of residual carbon on slag viscosity[J]. Fuel, 2015,158:976-982. doi: 10.1016/j.fuel.2015.06.055

    9. [9]

      KONG L X, BAI J, BAI Z Q, LL W. Effects of CaCO3 on slag flow properties at high temperatures[J]. Fuel, 2013,109:76-85. doi: 10.1016/j.fuel.2012.11.014

    10. [10]

      XUAN W W, WHITTY K J, GUAN Q L, BI D P, ZHAN Z H, ZHANG J S. Influence of Fe2O3 and atmosphere on crystallization characteristics of synthetic coal slags[J]. Energy Fuels, 2014,29(1):405-412.

    11. [11]

      XUAN W W, WHITTY K J, GUAN Q L, BI D P, ZHAN Z H, ZHANG J S. Influence of isothermal temperature and cooling rates on crystallization characteristics of a synthetic coal slag[J]. Fuel, 2014,137:193-199. doi: 10.1016/j.fuel.2014.07.092

    12. [12]

      XUAN W W, WHITTY K J, GUAN Q L, BI D P, ZHAN Z H, ZHANG J S. Influence of SiO2/Al2O3 on crystallization characteristics of synthetic coal slags[J]. Fuel, 2015,144:103-110. doi: 10.1016/j.fuel.2014.11.091

    13. [13]

      ZHANG Long, HUANG Zhen-yu, SHEN Ming-ke, WANG Zhi-hua, ZHOU Jun-hu. Effect of different regulative methods on coal ash fusion characteristics[J]. J Fuel Chem Technol, 2015,43(2):145-152.  

    14. [14]

      LU Hong-quan, LI Han-xu, MA Fei, MENG Ying, JIA Chun-lin. Study on fly ash fusibility affected by calcium base flux and fusion mechanism[J]. Coal Sci Technol, 2011,39(2):111-118.  

    15. [15]

      ZHAO Feng, GONG Yan, LIU Xia, XU Jie, YU Guang-suo. Fusion characteristics at high temperature of low temperature ash and high temperature ash of Shenfu coal[J]. Proc CSEE, 2015,35(5):1161-1168.  

    16. [16]

      MA Yan, HUANG Zhen-yu, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its fusion characteristics[J]. J Fuel Chem Technol, 2014,42(1):20-25.  

    17. [17]

      DAI Bai-qian, WU Xiao-jiang, CHEN Yu-shuang, ZHANG Zhong-xiao. Experimental study and quantum chemistry calculation on coal ash fusion behavior and related mineral evolution mechansium[J]. J Chin Soc Power Eng, 2014,34(1):70-76.  

    18. [18]

      LI De-xia, ZHOU Zhi-jie, GUO Qing-hua, YU Guang-suo. Ash fusion and viscosity-temperature characteristics of Yulin coal[J]. CIESC J, 2012,63(1):9-16.

    19. [19]

      XU Jie, LIU Xia, ZHANG Qing, ZHAO Feng, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Reseaech on ash fusibility and viscosity-temperature characteristic of high-calcium Shanxin coal ash[J]. Proc CSEE, 2013,33(20):46-51.  

    20. [20]

      VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust Sci, 2001,27(3):237-429. doi: 10.1016/S0360-1285(00)00023-X

  • 加载中
    1. [1]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    20. [20]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

Metrics
  • PDF Downloads(2)
  • Abstract views(1078)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return