Citation: CHENG Xiang-long, WANG Yong-gang, SUN Jia-liang, SHEN Tian, ZHANG Hai-yong, XU De-ping. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ: Macroscopic reaction characteristic[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 15-20. shu

Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ: Macroscopic reaction characteristic

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 17 August 2016
    Revised Date: 21 November 2016

    Fund Project: the 12th Five-Year Plan of National Science and Technology Support 2012BAA04B02

Figures(8)

  • Shengli brown coal in 150-180 μm was gasified at 800-900℃ in a simulated entrained-flow reactor, φ80×3 000 mm. Conversion and kinetics of steam gasification reaction of the lignite were discussed to investigate synergistic effects of oxidation reaction on steam gasification reaction. The results show that lignite conversion under H2O+1%O2 atmospheres is greater significantly than the sum of that under H2O atmosphere and 1%O2 atmosphere, i.e., the increase of lignite conversion from H2O atmosphere to H2O+1%O2 atmospheres is greater than that from N2 atmosphere to N2+1%O2 atmospheres. The synergistic effects are caused by promoting effect of oxidation reaction on steam gasification reaction, and are more obvious as H2O content increasing and temperature rising. Moreover, the similar experiments were carried out in φ40×200 mm cylindrical quartz fluidized bed, and the synergistic effects are also found. The steam gasification reaction rate equation, \begin{document}$ (Z-{{(1-x)}^{\frac{1}{3}}})=\frac{t\beta {{k}_{{{\text{H}}_{2}}\text{O}}}}{R{{\rho }_{\text{C}}}}{{\varphi }_{{{\text{H}}_{2}}\text{O}}}={{K}_{{{\text{H}}_{2}}\text{O}}}{{\varphi }_{{{\text{H}}_{2}}\text{O}}} $\end{document}, is in good agreement with experimental data. This indicates that the apparent rate constant KH2O increases obviously after O2 adding to water vapor, which is the kinetic characteristics of promoting effect of oxidation reaction on steam gasification reaction.
  • 加载中
    1. [1]

      WANG Yi. Macro & Micro Characteristic Analysis and Application for Massive Lignite High Temperature Steam Pyrolysis[M]. Xuzhou:China University of Mining and Technology Press, 2012.

    2. [2]

      DAI He-wu, XIE Ke-yu. Brown Coal Utilization Technology[M]. Beijing:China Coal Industry Publishing House, 1999.

    3. [3]

      LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013,112:609-623. doi: 10.1016/j.fuel.2013.01.031

    4. [4]

      TAY H L, KAJITAANI S, ZHANG S, LI C Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013,103:22-28. doi: 10.1016/j.fuel.2011.02.044

    5. [5]

      ZHOU Chen-liang, LIU Quan-sheng, LI Yang, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min. Production of hydrogen-rich syngas by steam gasification of Shengli lignite and catalytic effect of inherent minerals[J]. CIESC, 2013,64(6):2092-2102.  

    6. [6]

      REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, HUANG Jie-jie, WANG Yang. Effect of minerals in lignite char on kinetics of steam gasification[J]. Chem Eng (China), 2010,38(10):132-135.  

    7. [7]

      CRNOMARKOVIC N, REPIC B, MLADENOVIC R, NESKOVIC O, VELJKOVIC M. Experimental investigation of role of steam in entrained flow coal gasification[J]. Fuel, 2007,86(1):194-202.  

    8. [8]

      LEE J G, KIM J H, LEE H G. Characteristics of entrained flow coal gasification in a drop tube reactor[J]. Fuel, 1996,75(9):1035-1042. doi: 10.1016/0016-2361(96)00084-1

    9. [9]

      TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal:Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010,91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016

    10. [10]

      LI T T, ZHANG L, DONG L, LI C Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014,117(part B):1190-1195.

    11. [11]

      ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011,90(4):1529-1535. doi: 10.1016/j.fuel.2010.11.010

    12. [12]

      WU H W, LI X J, HAYASHI J I, CHIBA T, LI CZ. Effects of volatile-char interactions on the reactivity of charsfrom NaCl-loaded Loy Yang brown coal[J]. Fuel, 2005,84(10):1221-1228. doi: 10.1016/j.fuel.2004.06.037

    13. [13]

      ZHANG S, HAYASHI J I, LI C Z. Volatilization and catalytic effects of alkali and alkaline earth metallic species during the paralysis and gasification of Victorian brown coal. Part IX. Effects of volatile-charinteractions on char-H2O and char-O2reactivates[J]. Fuel, 2011,90(4):1655-1661. doi: 10.1016/j.fuel.2010.11.008

    14. [14]

      WANG F J, ZHANG S, CHEN Z D, LIU C, WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis, 2014,105:269-275. doi: 10.1016/j.jaap.2013.11.013

    15. [15]

      KOMAROVA E, GUHL S, MEYER B. Brown coal char CO2-gasification kinetics with respect to the char structure. Part Ⅰ:Char structure development[J]. Fuel, 2015,152:38-47. doi: 10.1016/j.fuel.2015.01.107

    16. [16]

      KAJITANI S, TAY H L, ZHANG S, LI C Z. Mechanisms and kinetic modeling of steam gasification of brown coal in the presence of volatile-char interactions[J]. Fuel, 2013,103:7-13. doi: 10.1016/j.fuel.2011.09.059

    17. [17]

      WANG Yong-gang, SUN Jia-liang, ZHANG Shu. Impacts of the gas atmosphere on the gasification reactivity and char structure of the brown coal[J]. J China Coal Soc, 2014,39(8):1765-1771.  

    18. [18]

      HE Yong-de. Modern Coal Chemical Industry Technical Manuals[M]. 2nd ed. Beijing:Chemical Industry Press, 2001.

    19. [19]

      LONG F J, SYKES K W. The mechanism of the steam-carbon reaction[J]. Proc R Soc, London, 1948,A193:377-99.

    20. [20]

      WEN C Y, LEE E S. Coal Conversion Technology[M]. New Jersey:Addisonwesley Publishing Co, Inc, 1979.

    21. [21]

      KWON T W, KIM J R, KIM S D, PARK W H. Catalytic steam gasification of lignite char[J]. Fuel, 1988,68(4):416-421.

    22. [22]

      MATSUI I, KUNII D, FURUSAWA T. Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics[J]. J Chem Eng Jpn, 1985,18(2):105-113. doi: 10.1252/jcej.18.105

  • 加载中
    1. [1]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    8. [8]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(1)
  • Abstract views(672)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return