Citation: Fuchen Cao, Zhendong Yuan. The Discovery, Preparation and Application History of Black Phosphorus[J]. Chemistry, ;2021, 84(2): 185-191. shu

The Discovery, Preparation and Application History of Black Phosphorus

  • Corresponding author: Zhendong Yuan, yuanzhendong64@126.com
  • Received Date: 1 September 2020
    Accepted Date: 9 October 2020

Figures(6)

  • In 1914, American physicist Bridgman accidentally produced black phosphorus and proved that it was a new variant of phosphorus, but for a long time it did not attract much attention. After the mid-20th century, the preparation of black phosphorus has been developed to a certain extent. In 2014, researchers successfully prepared a two-dimensional black phosphorus field effect transistor, subsequently, it was found that black phosphorus has great application potential in energy storage devices, optoelectronic devices, photocatalysis, bio-sensing and other fields. With the development of preparation methods of black phosphorus and the deepening of people's understanding of black phosphorus, the application of black phosphorus will also have a broader prospect.
  • 加载中
    1. [1]

    2. [2]

      Liao L, Lin Y C, Bao M, et al. Nature, 2010, 467(7313): 305~308.

    3. [3]

      Baba M, Nakamura Y, Takeda Y, et al. J. Phys. Cond. Matter, 1992, 4(6): 1535~1544.

    4. [4]

      Li L, Yu Y, Ye G, et al. APS March Meeting 2014. American Physical Society, 2014.

    5. [5]

      Sansone G, Maschio L, Usvyat D, et al. J. Phys. Chem. Lett., 2015, 7(1): 131~136.

    6. [6]

      Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8(4): 4033~4041.

    7. [7]

      Sun L Q, Li M J, Sun K, et al. J. Phys. Chem. C, 2012, 116(28): 14772~14779.

    8. [8]

      Dahbi M, Yabuuchi N, Fukunishi M, et al. Chem. Mater., 2016, 28(6): 1625~1635.

    9. [9]

      Batmunkh M, Bat-Erdene M, Shapter J G. Adv. Mater., 2016, 28(39): 8586~8617.

    10. [10]

      Long G, Maryenko D, Shen J, et al. Nano Lett., 2016, 16(12): 7768~7773.

    11. [11]

    12. [12]

    13. [13]

      Blondlot D. Am. J. Pharm. (1835~1907), 1865: 385~386.

    14. [14]

      Hittorf W. Annalen Der Physik, 1865, 202(10): 193~228.

    15. [15]

      Bridgman P W. J. Am. Chem. Soc., 1914, 36(7): 1344~1363.

    16. [16]

      Keyes, Robert W. Phys. Rev., 1953, 92(3): 580~584.

    17. [17]

      Endo S, Akahama Y, Terada S, et al. JPN J. Appl. Phys., 1982, 21(8): L482~L484.

    18. [18]

      Krebs H, Weitz H, Worms K H. Z. Anorg. Allg. Chem., 1955, 280(1-3): 119~133.

    19. [19]

      Brown A, Rundqvist S. Acta Crystallogr., 1965, 19(4): 684~685.

    20. [20]

      Baba M, Izumida F, Takeda Y, et al. JPN J. Appl. Phys., 1989, 28(6): 1019~1022.

    21. [21]

      Lange S, Schmidt P, Nilges T. Inorg. Chem., 2007, 46(10): 4028~4035.

    22. [22]

      Kopf M, Eckstein N, Pfister D, et al. J. Cryst. Growth, 2014, 405: 6~10.

    23. [23]

      Park C M, Sohn H J. Adv. Mater., 2007, 19(18): 2465~2468.

    24. [24]

      Smith J B, Hagaman D, Ji H F. Nanotechnology, 2016, 27(21): 215602.

    25. [25]

      Jiang Q, Xu L, Chen Ning, et al. Angew. Chem. Int. Ed., 2016, 55(44): 13849~13853.

    26. [26]

      Aldave S H, Yogeesh M N, Zhu W, et al. 2D Materials, 2016, 3(1): 014007.

    27. [27]

      Gusmão R, Sofer Z, Pumera M. Angew. Chem. Int. Ed., 2017, 56(28): 8052~8072.

    28. [28]

      Li L, Yu Y, Zhang Y, et al. Nat. Nanotechnol., 2014, 9(5): 372~377.

    29. [29]

      Park C M, Sohn H J. Adv. Mater., 2007, 19(18): 2465~2468.

    30. [30]

      Chen L, Zhou G, Liu Z, et al. Adv. Mater., 2016, 28(3): 510~517.

    31. [31]

      Jin H, Xin S, Chuang C, et al. Science, 2020, 370(6513): 192~197.

    32. [32]

      Buscema M, Groenendijk D J, Blanter S I, et al. Nano Lett., 2014, 14(6): 3347~3352.

    33. [33]

      Liu Y, Cai Y, Zhang G, et al. Adv. Funct. Mater., 2017, 27(7): 1604638.

    34. [34]

      Lin Y, Pan Y, Zhang J. Int. J. Hydrogen Energy, 2017, 42(12): 7951~7956.

    35. [35]

      He R, Hua J, Zeng J, et al. Nano Lett., 2017, 17(7): 4311~4316.

  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    4. [4]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    5. [5]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    7. [7]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    16. [16]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    18. [18]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    19. [19]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(43)
  • Abstract views(1700)
  • HTML views(658)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return