Citation: ZHENG Wei, CHEN Jia-ling, GUO Li, ZHANG Wen-bo, ZHAO Hao-ran, WU Xiao-qin. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1193-1207. shu

Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction

  • Corresponding author: CHEN Jia-ling, chenjialing@wust.edu.cn WU Xiao-qin, wuxiaoqin@wust.edu.cn
  • Received Date: 4 August 2020
    Revised Date: 6 September 2020

    Fund Project: The Natural Science Foundation of Hubei Province 2018CFB361the National Natural Science Foundation of China 22002114The Wuhan Science and Technology Bureau 2018060401011311The project was supported by the National Natural Science Foundation of China (22002114), the Natural Science Foundation of Hubei Province (2018CFB361) and the Wuhan Science and Technology Bureau (2018060401011311)

Figures(4)

  • Emission of NOx from stationary and mobile sources had caused many environmental problems. NH3 selective catalytic reduction technology (NH3-SCR) is one of the most effective technologies to eliminate NOx based on developing high-efficient catalysts. In this review, the catalytic activity for NH3-SCR, hydrothermal stability and deactivation mechanism of metal-based zeolite catalysts (mainly Cu- and Fe-based zeolite catalysts) employed in NH3-SCR were summarized. The main factors affecting the hydrothermal stability of Cu- or Fe-based zeolite catalysts in NH3-SCR, such as Si/Al ratio, zeolite topological structure, metal content, particle size and preparation methods of catalysts, were systematically reviewed. The modification approaches addressed in recent researches which could effectively improve the hydrothermal stability of metal-based zeolites in NH3-SCR, such as element modification using phosphorus, second active metal, alkali (earth) metal, and surface modification, were discussed. Hopefully, this review could provide a fundamental understanding of the deactivation behaviors of Cu- and Fe-based zeolite catalysts and pave the way towards the improvement of hydrothermal stability of zeolite catalysts in NH3-SCR.
  • 加载中
    1. [1]

      ZHANG R D, LIU N, LEI Z G, CHEN B H. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts[J]. Chem Rev, 2016,116(6):3658-3721. doi: 10.1021/acs.chemrev.5b00474

    2. [2]

      LI J H, CHANG H Z, MA L, HAO J M, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Catal Today, 2011,175(1):147-156.  

    3. [3]

      SHAN W P, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catal Sci Technol, 2015,5(9):4280-4288. doi: 10.1039/C5CY00737B

    4. [4]

      BEALE A M, GAO F, LEZCANO-GONZALEZ I, PEDEN C H, SZANYI J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chem Soc Rev, 2015,44(20):7371-7405. doi: 10.1039/C5CS00108K

    5. [5]

      GUAN B, ZHAN Reggie, LIN H, ZHEN H. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust[J]. Appl Therm Eng, 2014,66(1/2):395-414.  

    6. [6]

      BRANDENBERGER S, KROCHER O, TISSLER A, RODERIK A. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008,50(4):492-531.  

    7. [7]

      PARK J H, PARK H J, BAIK J H, NAM I S, SHIN C H, LEE J H, CHO B K, OH S H. Hydrothermal stability of Cu/ZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. J Catal, 2006,240(1):47-57.  

    8. [8]

      UPAKUL D, LEZCANO-GONZALEZ I, WECKHUYSEN B M, BEALE A M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catal, 2013,3(3):413-427.  

    9. [9]

      ZHAO Y G, HU J, HUA L, SHUAI S J, WANG J X. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res, 2011,50(21):11863-11871. doi: 10.1021/ie201045w

    10. [10]

      MA L, CHENG Y S, CAVATAIO G, MCCABE R W. FU L X, LI J H. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B, 2014,156/157:428-437. doi: 10.1016/j.apcatb.2014.03.048

    11. [11]

      GUO X Y, BARTHOLOMEW C, HECKER W, BAXTER L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B, 2009,92(1/2):30-40.  

    12. [12]

      JOHNSON T V. Review of diesel emissions and control[J]. Int J Engine Res, 2009,10(5):275-285. doi: 10.1243/14680874JER04009

    13. [13]

      SHI An-ju. Study on catalytic activity and hydrothermal characterization of NH3-SCR catalyst modified by V2O5-WO3-TiO2 system[D]. Tianjin: Tianjin University, 2011.

    14. [14]

      CUI Hong-li. The NH3-SCR performance and hydrothermal stability of one-pot synthesized Cu-SAPO-34 catalysts with different copper contents[D]. Tianjin: Tianjin University, 2016.

    15. [15]

      ZHANG S G, ZHANG B L, LIU B, SUN S L. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3:reaction mechanism and catalyst deactivation[J]. RSC Adv, 2017,7(42):26226-26242. doi: 10.1039/C7RA03387G

    16. [16]

      YU Y X, TAN W, AN D Q, TANG C J, ZOU W X, GE C Y, TONG Q, GAO F, SUN J F, DONG L. Activity enhancement of WO3 modified FeTiOx catalysts for the selective catalytic reduction of NOx by NH3[J]. Catal Today, 2019.  

    17. [17]

      CHENG K, SONG W Y, CHENG Y, ZHENG H L, WANG L U, LIU J, ZHAO Z, WEI Y C. Enhancing the low temperature NH3-SCR activity of FeTiOx catalysts via Cu doping:a combination of experimental and theoretical study[J]. RSC Adv, 2018,8:19301-19309. doi: 10.1039/C8RA02931H

    18. [18]

      YAO X J, CHEN L, CAO J, CHEN Y, TIAN M, YANG F M, SUN J F, TANG C J, DONG L. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification[J]. Chem Eng J, 2019,369:46-56. doi: 10.1016/j.cej.2019.03.052

    19. [19]

      LI L L, TAN W, WEI X Q, FAN Z X, LIU A N, GUO K, MA K L, YU S H, GE C Y, TANG C J, DONG L. Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts[J]. Catal Commun, 2018,114:10-14. doi: 10.1016/j.catcom.2018.05.015

    20. [20]

      YANG C, YANG J, JIAO Q R, ZHAO D, ZHANG Y X, LIU L, HU G, LI J L. Promotion effect and mechanism of MnOx doped CeO2 nano-catalyst for NH3-SCR[J]. Ceram Int, 2020,46:4394-4401. doi: 10.1016/j.ceramint.2019.10.163

    21. [21]

      MENG Q N, CUI J N, WANG K, TANG Y F, ZHAO K, HUANG L. Facile preparation of hollow MnOx-CeO2 composites with low Ce content and their catalytic performance in NO oxidation[J]. Mol Catal, 2020,493:111107-111116. doi: 10.1016/j.mcat.2020.111107

    22. [22]

      GAO F Y, TANG X L, YIH H, ZHAO S Z, WANG J G, SHI Y R, MENG X M. Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature[J]. Appl Surf Sci, 2018,443:103-113. doi: 10.1016/j.apsusc.2018.02.151

    23. [23]

      YANG G, ZHAO H T, LUO X, SHI K Q, ZHAO H B, WANG W K, CHEN Q H, FAN H, WU T. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts[J]. Appl Catal B, 2019,245:743-752. doi: 10.1016/j.apcatb.2018.12.080

    24. [24]

      YU Chen-long, HUANG Bi-chun, YANG Yin-xin. Review on application of molecular sieve to denitration catalysts for low-temperature NH3-SCR[J]. J South China Univ Techno, 2015,43(3):143-151.  

    25. [25]

      WANG A Y, WANG Y L, WALTER E D, WASHTON N M, GUO Y L, LU G Z, PEDEN C H F, GAO F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts:hydrothermal aging and propylene poisoning effects[J]. Catal Today, 2019,320:91-99. doi: 10.1016/j.cattod.2017.09.061

    26. [26]

      MONTENEGRO G, ONORATI A. Urea-SCR technology for deNOx after treatment of diesel exhausts[M]. Springer New York Heidelberg Dordrecht London, 2014.

    27. [27]

      WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, Lu G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal, 2018,358:199-210. doi: 10.1016/j.jcat.2017.12.011

    28. [28]

      JOAQUIN P P, MANUEL S S. Structure and reactivity of metals in zeolite materials[M]. Springer Nature Switzerland, 2018.

    29. [29]

      KORHONEN S T, FICKEL D W, LOBO R F, WECKHUYSEN B M, BEALE A M. Isolated Cu2+ ions:active sites for selective catalytic reduction of NO[J]. Chem Comm, 2011,47(2):800-802. doi: 10.1039/C0CC04218H

    30. [30]

      LOMACHENKO K A, BORFECCHIA E, NEGRI C, BERLIER G, LAMBERTI C, BEATO P, FALSIG H, BORDIGA S. The Cu-CHA deNOx catalyst in action:temperature-dependent NH3-SCR monitored by operando X-ray absorption and emission spectroscopies[J]. J Am Chem Soc, 2016,138(37):12025-12028. doi: 10.1021/jacs.6b06809

    31. [31]

      BEALE A M, LEZCANO-GONZALEZ I, SLAWINSKI W A, SLAWINSKI W A, WRAGG D S. Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction[J]. Chem Comm, 2016,52(36):6170-6173. doi: 10.1039/C6CC00513F

    32. [32]

      GAO F, WALTER E D, KARP E M, LUO J Y, RUSSELL G T, KWAK J H, JANOS S, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal, 2013,300:20-29. doi: 10.1016/j.jcat.2012.12.020

    33. [33]

      AEDERSEN C W, BERMHOOLM M, VENNESTROM P N, BLICHFELD A B, LUNDEGAARD L F, IVERSEN B B. Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the rietveld/maximum entropy method[J]. IUCrJ, 2014,1:382-386. doi: 10.1107/S2052252514020181

    34. [34]

      PAOLUCCI , CHRISTOPHER , PAREKH A A, KHURANA , ISHANT , DI I, JOHN R, LI H, ALBARRACINl C, JONATAN D, SH IH, ARTHUR , ANGGARA , TRUNOJOYO , DELGASS , NICHOLAS W, MILLER , JEFFREY T, RIBEIRO , FABIO H, GOUNDER , RAJAMANI , SCHNEIDER , WILLIAM F. Catalysis in a cage:condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. J Am Chem Soc, 2016,138(18):6028-6048. doi: 10.1021/jacs.6b02651

    35. [35]

      GAO F, WASHTON N M, WANG Y L, KOLLAR M, SZANYI J, PEDEN C H F. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts:implications for the active Cu species and the roles of Brønsted acidity[J]. J Catal, 2015,331:25-38. doi: 10.1016/j.jcat.2015.08.004

    36. [36]

      SONG J, WANG Y L, WALTER E D, WASHTON N M, MEI D H, KOVARIK L, ENGELHARD M H, PRODINGER S, WANG Y, PADEN C H F, GAO F. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts:implications from atomic-level understanding of hydrothermal stability[J]. ACS Catal, 2017,7(12):8214-8227. doi: 10.1021/acscatal.7b03020

    37. [37]

      KHARAS K C C, HJROBOTA , LIU D J. Deactivation in Cu-ZSM-5 lean-burn catalysts[J]. Appl Catal B, 1993,2(2/3):225-237.  

    38. [38]

      YAN J Y, LEI G D, SSCHTER W M H, KUNG A H H. Deactivation of Cu/ZSM-5 catalysts for lean NOx reduction characterization of changes of Cu state and zeolite support[J]. J Catal, 1996,161(1):43-54.  

    39. [39]

      VENNESTROM P N R, JANSSENS T V W, KUSTOV A, GRILL M, PUIG-MOLINA A, LUNDEGRRD L F, TIRUVALAM R R, CONCEPCION P, CORMA A. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3[J]. J Catal, 2014,309:477-490. doi: 10.1016/j.jcat.2013.10.017

    40. [40]

      ZHAO H W, ZHAO Y N, LIU M K, LI X H, MA Y H, YONG X, CHEN H, LI Y D. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3[J]. Appl Catal B, 2019,252:230-239. doi: 10.1016/j.apcatb.2019.04.037

    41. [41]

      GAO F, SZANYI J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Appl Catal A, 2018,560:185-194. doi: 10.1016/j.apcata.2018.04.040

    42. [42]

      SU W, LI Z, PENG Y, LI J. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging[J]. Phys Chem Chem Phys, 2015,17(43):29142-29149. doi: 10.1039/C5CP05128B

    43. [43]

      MAO Y, WANG Z Y, WANG H F, HU P. Understanding catalytic reactions over zeolites:a density functional theory study of selective catalytic reduction of NOx by NH3 over Cu-SAPO-34[J]. ACS Catal, 2016,6(11):7882-7891. doi: 10.1021/acscatal.6b01449

    44. [44]

      CUI Y R, WANG Y L, WALTER E D, SZANJI J, WANG Y, GAO F. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts[J]. Catal Today, 2020,339:233-240. doi: 10.1016/j.cattod.2019.02.037

    45. [45]

      GAO F, WANG Y L, WASHTON N M, KOLLAR M, SZANYI J, PEDEN C H F. Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR Catalysts[J]. ACS Catal, 2015,5(11):6780-6791. doi: 10.1021/acscatal.5b01621

    46. [46]

      GAO F, ZHENG Y, KUKKADAPU R K, WANG Y L, WALTER E D, SCHWENZER B, SZANYI J, PEDEN C H F. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts:nature of the Fe ions and structure-function relationships[J]. ACS Catal, 2016,6(5):2939-2954. doi: 10.1021/acscatal.6b00647

    47. [47]

      BRANDENBERRGER S, KROCHER O, TISSLER A, ALTHOFFl R. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3[J]. Appl Catal B, 2010,95(3/4):348-357.  

    48. [48]

      MARTIN H, JOSEF B M, GRUNWALDT J D, DAHL S. The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts[J]. Appl Catal B, 2009,93(1/2):166-176.  

    49. [49]

      SHI X Y, LIU F D, SHAN W P, HE H. Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3[J]. Chinese J Catal, 2012,33(2/3):454-464.  

    50. [50]

      LIN Q J, Feng ENG X, ZHANG H L, LIN C L, LIU S, XU H D, CHEN Y Q. Hydrothermal deactivation over CuFe/BEA for NH3-SCR[J]. J Ind Eng Chem, 2018,65:40-50. doi: 10.1016/j.jiec.2018.04.009

    51. [51]

      KOVARIK L, WASHTON N M, KUKKADAPU R, DEVARAJ A, WANG A Y, WANG Y L, SZANYI J, PEDEN C H F, GAO F. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging:A spectroscopic, microscopic, and kinetics study[J]. ACS Catal, 2017,7(4):2458-2470.  

    52. [52]

      BRANDENBERGER S, KROCHER O, CASAPU M, TISSLER A, RODERIK A. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3[J]. Appl Catal B, 2011,101:649-659. doi: 10.1016/j.apcatb.2010.11.006

    53. [53]

      GAO F, WANG Y L, KOLLAR M, WASHTON N M, SZANYI J, PEDEN C H F. A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts[J]. Catal Today, 2015,258:347-358. doi: 10.1016/j.cattod.2015.01.025

    54. [54]

      GAO F, WANG Y L, KOLLAR M, KUKKADAPU R, WASHTON N M, WANG Y L, SZANYI J, PEDEN C H F. Fe/SSZ-13 as an NH3-SCR catalyst:a reaction kinetics and FTIR/Mössbauer spectroscopic study[J]. Appl Catal B, 2015,164:407-419. doi: 10.1016/j.apcatb.2014.09.031

    55. [55]

      GAO F, SZANYI J, WANG Y L, SSHENZER B, KOLLAR M, PEDEN C H F. Hydrothermal aging effects on Fe/SSZ-13 and Fe/Beta NH3-SCR catalysts[J]. Top Catal, 2016,59(10/12):882-886.  

    56. [56]

      PIETERSE J A Z, PIRNGRUBER G D, VAN B J A, BOONEVELD S. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition[J]. Stud Surf Sci Catal, 2007,170:1386-1391. doi: 10.1016/S0167-2991(07)81005-6

    57. [57]

      FAN C, CHEN Z, PANG L, MING S J, ZHANG X F, ALBERT K B, LIU P, CHEN H P, LI T. The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR[J]. Appl Catal A, 2018,550:256-265. doi: 10.1016/j.apcata.2017.11.021

    58. [58]

      JIANG H, GUAN B, LIN H, ZHEN H. Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts Influence of the Si/Al ratio on the activity and hydrothermal properties[J]. Fuel, 2019,255:115587-115602. doi: 10.1016/j.fuel.2019.05.170

    59. [59]

      VERMA A A, BATES S A, ANGGARA T, PAOLUCCI C, PAREKH A A, KAMASAMUDRAM K, YEZERESTS A, MILLER J T, DELGASSe W N, SCHNEIDER W F, RIBEIRO F H. NO oxidation:A probe reaction on Cu/SSZ-13[J]. J Catal, 2014,312:179-190. doi: 10.1016/j.jcat.2014.01.017

    60. [60]

      SCHMIEG S J, OH S H, KIM C H, BROWN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012,184(1):252-261.  

    61. [61]

      GAO F, MEI D H, WANG Y L, SZANYI J, PEDEN C H F. Selective catalytic reduction over Cu/SSZ-13 linking homo- and heterogeneous catalysis[J]. J Am Chem Soc, 2017,139:4935-4942. doi: 10.1021/jacs.7b01128

    62. [62]

      LUO J Y, WANG D, KUMAR A, LI J H, KAMASAMUDRAM K, CURRIRE N, ALEKSEY Y. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning[J]. Catal Today, 2016,267:3-9. doi: 10.1016/j.cattod.2015.12.002

    63. [63]

      KWAK J H, TRAN D, BURTOKN S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012,287:203-209. doi: 10.1016/j.jcat.2011.12.025

    64. [64]

      MA L, CHENG Y S, CAVATAIO G, MCCABE R W, FU L X, LI J H. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J, 2013,225:323-330. doi: 10.1016/j.cej.2013.03.078

    65. [65]

      BLAKEMAN P G, BURKHOLDER E M, CHEN H Y, COLLIER JI E, FEDEYKO J M, JOBSON H, RAJARAM R R. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts[J]. Catal Today, 2014,231:56-63. doi: 10.1016/j.cattod.2013.10.047

    66. [66]

      KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010,275(2):187-190.  

    67. [67]

      YE Q, WANG L F, YANG R T. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5[J]. Appl Catal A, 2012,427-428:24-34.  

    68. [68]

      SHUAN H, YE Q, CHENG S Y, KANG T F, DAI H X. Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR[J]. Catal Sci Technol, 2016,10:1-3.  

    69. [69]

      LUO J Y, GAO F, KAMASAMUDRAM K, CURRIER N, PEDEN C H F, YEZERETS A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I:nature of acidic sites probed by NH3 titration[J]. J Catal, 2017,348:291-299. doi: 10.1016/j.jcat.2017.02.025

    70. [70]

      WANG A, CHEN Y, WALTER E. D, WASHTON N M, MEI D, VARGA T, WANG Y, SZANYI J, WANG Y, PEDEN C H F, GAO F. Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts[J]. Nat Commun, 2019,10(1):1137-1149.  

    71. [71]

      WANG A Y, ARORA P, BERNIN D, KUMAR A, KAMASAMUDRAM K, OLSSON L. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B, 2019,246:242-253. doi: 10.1016/j.apcatb.2019.01.039

    72. [72]

      JO D H, PARK G T, RYU T, HONG S B. Economical synthesis of high-silica LTA zeolites:A step forward in developing a new commercial NH3-SCR catalyst[J]. Appl Catal B, 2019,243:212-219. doi: 10.1016/j.apcatb.2018.10.042

    73. [73]

      SHAN Y L, SHAN W P, SHI X Y, DU J P, YU Y B, HE H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Appl Catal B, 2020,264:118511-118523. doi: 10.1016/j.apcatb.2019.118511

    74. [74]

      WANG Y, LI G G, ZHANG S Q, ZHANG X Y, ZHANG X, HAO Z P. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction:Activity, hydrothermal stability, and mechanism study[J]. Chem Eng J, 2020,393:124782-124795. doi: 10.1016/j.cej.2020.124782

    75. [75]

      ZHANG N N, XIN Y, LI Q, MA X C, QI Y X, ZHENG L R, ZHANG Z L. Ion exchange of one-pot synthesized Cu-SAPO-44 with NH4NO3 to promote Cu dispersion and activity for selective catalytic reduction of NOx with NH3[J]. Catalysts, 2019,9(11):882-894. doi: 10.3390/catal9110882

    76. [76]

      XIN Y, ZHANG N N, WANG X, LI Q, MA X C, QI Y X, ZHENG L R, ANDEISON J A, ZHANG Z L. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO by NH3[J]. Catal. Today, 2019,332:35-41. doi: 10.1016/j.cattod.2018.08.018

    77. [77]

      AHN N H, RYU T, KANG Y, KIM H, SHIN J, NAM I S, HONG S B. The origin of an unexpected increase in NH3-SCR activity of aged Cu-LTA catalysts[J]. ACS Catal, 2017,7(10):6781-6785. doi: 10.1021/acscatal.7b02852

    78. [78]

      CAMBIOR M A, CORMA A, VALENCIA S. Characterization of nanocrystalline zeolite Beta[J]. Microporous Mesoporous Mater, 1998,25:59-74. doi: 10.1016/S1387-1811(98)00172-3

    79. [79]

      HUANG S Y, WANG J, WANG J Q, WANG C, SHEN M Q, LI W. The influence of crystallite size on the structural stability of Cu/SAPO-34 catalysts[J]. Appl Catal B, 2019,248:430-440. doi: 10.1016/j.apcatb.2019.02.054

    80. [80]

      DU J P, SHI X Y, SHAN Y L, WANG Y J, ZHANG W S, YU Y B, SHAN W P, HE H. The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34[J]. Catal Sci Technol, 2020,10:2855-2863. doi: 10.1039/D0CY00414F

    81. [81]

      PENG C, LIU Z D, AOKI H, CHOKKALINGAM A, HIROKI Y, KOJI O, SOHEI S, MARIKO A, HIROYUKI S, TAKAHIKO T, MUKTI R R, TATSUYA O, WAKIHARA T. Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method[J]. Microporous Mesoporous Mater, 2018,255:192-199. doi: 10.1016/j.micromeso.2017.07.042

    82. [82]

      FENG B J, ZHONG W, SUN Y Y, ZHANG C H, TANG S F, LI X B, XIANG H. Size controlled ZSM-5 on the structure and performance of Fe catalyst in the selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2016,80:20-23. doi: 10.1016/j.catcom.2016.02.020

    83. [83]

      FICKEL D W, DADDIO E, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B, 2011,102(3/4):441-448.  

    84. [84]

      KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, ChO B K. Hydrothermal stability of Cu/SSZ-13 for reducing NOx by NH3[J]. J Catal, 2014,311:447-457. doi: 10.1016/j.jcat.2013.12.012

    85. [85]

      CHENG J, HAN S, YE Q, CHENG S Y, KANG T F, DAI H X. Effects of hydrothermal aging at high and low temperatures on the selective catalytic reduction of NOx with NH3 over Cu/SAPO-34[J]. Res Chem Intermed, 2019,45(4):2023-2044. doi: 10.1007/s11164-018-03712-0

    86. [86]

      WANG J, FAN D Q, YU T, WANG J Q, HAO T, HU X Q, SHEN M Q, LI W. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. J Catal, 2015,322:84-90. doi: 10.1016/j.jcat.2014.11.010

    87. [87]

      WANG Q Y, SHEN M Q, WANG J Q, WANG C, WANG J. Nature of cerium on improving low-temperature hydrothermal stability of SAPO-34[J]. J Rare Earths, 2020.  

    88. [88]

      XIANG X, WU P F, CAO Y, CAO L, WANG Q Y, XU S T, TIAN P, LIU Z M. Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NOx with NH3[J]. Chinese J Catal, 2017,38(5):918-927. doi: 10.1016/S1872-2067(17)62836-5

    89. [89]

      MING S J, CHEN Z, FAN C, PANG L, GUO W, ALBERT K B, LIU P, LI T. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR[J]. Appl Catal A, 2018,559:47-56. doi: 10.1016/j.apcata.2018.04.008

    90. [90]

      SHAN Y L, DUA J P, YUA Y B, SHAN W P, SHAI X Y, HE H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction[J]. Appl Catal B, 2020,266:118655-118667. doi: 10.1016/j.apcatb.2020.118655

    91. [91]

      ANDONOVA S, TAMM S, MONTREUIL C, LAMBERT C, OLSSON L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Appl Catal B, 2016,180:775-787. doi: 10.1016/j.apcatb.2015.07.007

    92. [92]

      JIANG H, GUAN B, PENG X S, ZHAN R, HE L, ZHEN H. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chem Eng J, 2020,379:122358-122370. doi: 10.1016/j.cej.2019.122358

    93. [93]

      WU X X, PENG J X, YANG S M, XU W Y. Investigation on the stability of copper modification of SAPO-34 catalysts in NH3-SCR reaction after hydrothermal aging[J]. Can J Chem, 2020,98(5):236-243. doi: 10.1139/cjc-2019-0462

    94. [94]

      WANG Y, XIE L, LIU F, RUAN W. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3[J]. J Environ Sci (China), 2019,81:195-204. doi: 10.1016/j.jes.2019.01.013

    95. [95]

      CHEN J L, PENG G, ZHENG W, ZHANG W B, GUO L, WU X Q. Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NOx with NH3[J]. Catal Sci Technol, 2020.  

    96. [96]

      ZHAO H W, ZHAO Y N, MA Y H, XIN Y, MIAO W, CHEN H, ZHANG C J, LI Y D. Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed[J]. J Catal, 2019,377:218-223. doi: 10.1016/j.jcat.2019.07.023

    97. [97]

      BERGGRUND M, INGELSTEN H H, SKOGLUNDH M, PALMQVIST A E C. Influence of synthesis conditions for ZSM-5 on the hydrothermal stability of Cu-ZSM-5[J]. Catal Letters, 2009,130(1/2):79-85.  

    98. [98]

      WANG M X, PENG Z L, ZHANG C M, LIU M M, HAN L, HOUY Q, HUANG Z G, WANG J C, BAO W R, CHANG L P. Effect of copper precursors on the activity and hydrothermal stability of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019,9:781-795. doi: 10.3390/catal9090781

    99. [99]

      WOO J, BERNIN D, AHARI H, SHOST M, ZAMMIT M, OLSSON L. Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction[J]. Catal Sci Technol, 2019,9(14):3623-3636. doi: 10.1039/C9CY00240E

    100. [100]

      LIN C L, CAO Y, FENG X, LIN Q J, XU H D, CHEN Y Q. Effect of Si islands on low-temperature hydrothermal stability of Cu/SAPO-34 catalyst for NH3-SCR[J]. J Taiwan Inst E, 2017,81:288-294. doi: 10.1016/j.jtice.2017.09.050

    101. [101]

      LI P, ZHANG W P, HAN X W, BAO X H. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites[J]. Catal Letters, 2009,134(1/2):124-130.  

    102. [102]

      ZENG P H, LIANG Y, JI S F, SHEN B J, LIU H H, WANG B J, ZHAO H J, LI M F. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energ Chem, 2014,23(2):193-200.  

    103. [103]

      CORMA A, MENGUAL J, MIGUEL P J. IM-5 zeolite for steam catalytic cracking of naphtha to produce propene and ethene. An alternative to ZSM-5 zeolite[J]. Appl Catal A, 2013,460-461:106-115.  

    104. [104]

      ZHUANG J Q, MA D, YANG G, YAN Z M, LIU X M, LIU X C, HAN X W, BAO X H, PENG X, LIU Z M. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. J Catal, 2004,228:234-242. doi: 10.1016/j.jcat.2004.08.034

    105. [105]

      WANG X, DAI W L, WU G J, LI L D, GUAN N J, HUNGER M. Phosphorus modified HMCM-22:Characterization and catalytic application in methanol-to-hydrocarbons conversion[J]. Microporous Mesoporous Mater, 2012,151:99-106. doi: 10.1016/j.micromeso.2011.11.008

    106. [106]

      BUCHHOLZ A, WANG W, XU M, ARNOLD A, HUNGER M. Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy[J]. Microporous Mesoporous Mater, 2002,56:267-278. doi: 10.1016/S1387-1811(02)00491-2

    107. [107]

      KALIUCHI Y, TANIGAWA T, TSUNOJI N, TAKAMITSU Y, Sadakane M, SANO T. Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions[J]. Appl Catal A, 2019,575:204-213. doi: 10.1016/j.apcata.2019.02.026

    108. [108]

      MA Y H, ZHAO H W, ZHANG C J, ZHAO Y N, CHEN H, LI Y D. Enhanced hydrothermal stability of Cu-SSZ-13 by compositing with Cu-SAPO-34 in selective catalytic reduction of nitrogen oxides with ammonia[J]. Catal Today, 2019.  

    109. [109]

      FAN J, NING P, WANG Y C, SONG Z X, LIU X, WANG H M, WANG J, WANG L Y, ZHANG Q L. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction[J]. Chem Eng J, 2019,369:908-919. doi: 10.1016/j.cej.2019.03.049

    110. [110]

      GAO Q, YE Q, HAN S A, CHENG S Y, KANG T F, DAI H X. Effect of Ce doping on hydrothermal stability of Cu-SAPO-18 in the selective catalytic reduction of NO with NH3[J]. Catal Surv from Asia, 2020,24(2):134-142. doi: 10.1007/s10563-020-09294-5

    111. [111]

      TOYOHIRO U, LIU Z D, SAYOKO I, ZHU J, CHOKKALINGAM A, HIROKAZU I, NAOKI O, YUKICHI S, SHIRAMATA Y, KUSAMOTO T, WAKIHARA T. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catal, 2018,8(10):9165-9173. doi: 10.1021/acscatal.8b01949

    112. [112]

      XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIANn P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A, 2018,551:79-87. doi: 10.1016/j.apcata.2017.12.001

    113. [113]

      RAMIREZ-GARZA R E, RODRIGUEZ-IZNAGA I, SIMAKOV A, FARIAS M H, CASTILLON-BARRAZA F F. Cu-Ag/mordenite catalysts for NO reduction:Effect of silver on catalytic activity and hydrothermal stability[J]. Mater Res BullMater Res Bull, 2018,97:369-378. doi: 10.1016/j.materresbull.2017.09.001

    114. [114]

      SONG C M, ZHANG L H, LI Z G, LU Y R, LI K X. Co-exchange of Mn:A simple method to improve both the hydrothermal stability and activity of Cu/SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019,9:455-468. doi: 10.3390/catal9050455

    115. [115]

      ZHAO Y Y, BYUNGCHUL C, KIM D. Effects of Ce and Nb additives on the de-NOx performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles[J]. Chem Sci, 2017,164:258-269.  

    116. [116]

      FENG X, LIN Q J, CAO Y, ZHANG H L, LI Y S, XU H D, LIN C L, CHEN Y Q. Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH3-SCR monolith catalyst[J]. J Taiwan Inst E, 2017,80:805-812. doi: 10.1016/j.jtice.2017.09.036

    117. [117]

      LIN Q J, LIU J Y, LIU S, XU S H, LIN C L, FENG X, WANG Y, XU H D, CHEN Y Q. Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH3-SCR[J]. Dalton Trans, 2018,47(42):15038-15048. doi: 10.1039/C8DT03156H

    118. [118]

      WANG C, WANG C, WANG J, WANG J Q, SHEN M Q, LI W. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction[J]. J Environ Sci (China), 2018,70:20-28. doi: 10.1016/j.jes.2017.11.002

    119. [119]

      XIE L J, LIU F D, SHI X Y, XIAO F S, HE H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu/SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B, 2015,179:206-212. doi: 10.1016/j.apcatb.2015.05.032

    120. [120]

      MA J, SI Z C, WENG D, WU X D, YUE M. Potassium poisoning on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia[J]. Chem Eng J, 2015,267:191-200. doi: 10.1016/j.cej.2014.11.020

    121. [121]

      WANG C, YAN W J, WANG Z X, CHEN Z X, WANG J Q, WANG J, WANG J M, SHEN M Q, KANG X. The role of alkali metal ions on hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts[J]. Catal Today, 2019.  

    122. [122]

      ZHAO Z C, YU R, ZHAO R R, SHI C, GIES H, XIAO F S, DE V D, YoOKOI T, BAO X H, KOLB U, FEYEN M, MCGUIRE R, MAURER S, MOINI A, MULER U, ZHANG W P. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst:Effects of Na+ ions on the activity and hydrothermal stability[J]. Appl Catal B, 2017,217:421-428. doi: 10.1016/j.apcatb.2017.06.013

    123. [123]

      CUI Y R, WANG Y L, MEI D H, WALTER E, WASHTON N M, HOLLADAY J D, WANGY , SZANYA J, PEDEN C H F, GAO F. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts[J]. J Catal, 2019,378:363-375. doi: 10.1016/j.jcat.2019.08.028

    124. [124]

      ZHANG T, SHI J, LIU J, WANG D X, ZHAO Z, CHENG K, LI J M. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2016,375:186-195. doi: 10.1016/j.apsusc.2016.03.049

    125. [125]

      MIYAKE K, INOUE R, MIURA T, NAKAI M, ALJABRIl H, HIROTA Y, USHIDA Y, TANAKA S, MIYAMOTO M, INGAAKI S, KUBOTA Y, KONG C Y, NISHIYAMA N. Improving hydrothermal stability of acid sites in MFI type aluminosilicate zeolite (ZSM-5) by coating MFI type all silica zeolite (silicalite-1) shell layer[J]. Microporous Mesoporous Mater, 2019,288:109523-109536. doi: 10.1016/j.micromeso.2019.05.048

    126. [126]

      CHEN L, WANG X X, CONG Q L, MA H Y, LI S J, LI W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2019,369:957-967. doi: 10.1016/j.cej.2019.03.055

    127. [127]

      ZHANG T, QIU F, LI J H. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO with NH3:Enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Appl Catal B, 2016,195:48-58. doi: 10.1016/j.apcatb.2016.04.058

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    15. [15]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(21)
  • Abstract views(2200)
  • HTML views(532)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return