Citation: Jiang Ruyuan, Long Zerong, Ran Wensheng, Su Yuhong. Progress in Applications of Surface Molecular Imprinting Sensors[J]. Chemistry, ;2017, 80(4): 341-348. shu

Progress in Applications of Surface Molecular Imprinting Sensors

Figures(4)

  • Surface molecular imprinted sensors (SMIS) have comparable selectivities with those biosensors. They have received great attention from domestic and foreign researchers due to the advantages of easy preparation, low cost, remarkable robustness and excellent repeatability. Compared with the traditional chromatography analysis methods (i.e., GC, GC-MS, HPLC and HPLC-MS etc.), SMIS combine separation and detection functions without any sample pretreatment step, so they can afford a much simple, sensitive and rapid sample analysis, and are widely used in medicine transferring, environmental monitoring, food safety analysis and real-time chemical analysis. In this paper, the classification, fabrication methods and application fields of SMIS are reviewed, and the challenges and prospects of this technology are also discussed.
  • 加载中
    1. [1]

      S Li, G Yi, A P F Turner. Adv. Funct. Mater., 2011, 21 (6): 1194~1200. 

    2. [2]

      C Choong, J Bendall, W Milne. Biosens. Bioelectron., 2009, 25 (3): 652~656. 

    3. [3]

      S Xu, H Lu, X Zheng et al. J. Mater. Chem. C, 2013, 1(29): 4406~4422.

    4. [4]

      L Chen, S Xu, J Li. Chem. Soc. Rev., 2011, 40(5): 2911~2942.

    5. [5]

      L Chen, X Wang, W Lu et al. Chem. Soc. Rev., 2016, 45(8): 2137~2211. 

    6. [6]

      K Tsukagoshi, K Y Yu, M Maeda et al. Bull. Chem. Soc. Jpn., 1993, 66 (1): 114~120. 

    7. [7]

      J S Min, Y J Shin, S W Hwang et al. Int. J. Polym. Sci., 2013, 2013(21): 9714~9722. 

    8. [8]

      Y C Xiao, M L Hui, S Chung et al. Langmuir, 2008, 23(26): 12990~12996. 

    9. [9]

      M Baniceru, C V Manda, S M Popescu. J. Pharm. Biomed. Anal., 2011, 54(1): 1~12. 

    10. [10]

      M Jia, L Qin, X W He et al. J. Mater. Chem., 2011, 22(2): 707~713. 

    11. [11]

      S A Zaidi. Electrophoresis, 2013, 34(34): 1375~1382. 

    12. [12]

      F Ahmadi, E Yawari, M Nikbakht. J. Chromatogr. A, 2014, 1338(7): 9~16. 

    13. [13]

      C Xing, Z Zhang, Y Xiao et al. Talanta, 2012, 99(17): 959~65.

    14. [14]

      D Djozan, B Ebrahimi, M Mahkam et al. Anal. Chim. Acta, 2010, 67(1): 40~48.

    15. [15]

      C J Stephenson, K D Shimizu. Polym. Int., 2007, 56(4): 482~488. 

    16. [16]

      H F Hawari, N M Samsudin, A Y M Shakaff et al. Sens. Actuat. B, 2013, 187(187): 434~444. 

    17. [17]

       

    18. [18]

      J J Becker, M R Gagne. Acc. Chem. Res., 2004, 37(10): 798~804. 

    19. [19]

      Pan J, Hang H, Li X et al. Appl. Surf. Sci., 2013, 287(12): 211~217. 

    20. [20]

      J D Lee, J I Hong. Tetrahed. Lett., 2013, 54(22): 2890~2893.

    21. [21]

      H Shi, W B Tsai, M D Garrison et al. Nature, 1999, 398(6728): 593~597. 

    22. [22]

      L Ye, K Haupt. Anal. Bio. Chem., 2004, 378(8): 1887~1897.

    23. [23]

      H Ju, X Zhang, J Wang. Nanobiosensing, 2011: 265~303. 

    24. [24]

      S Suriyanarayanan, P J Cywinski, A J Moro et al. Top. Curr. Chem., 2012, 325(10): 165~265. 

    25. [25]

      Y Wang, Z Zhang, V Jain et al. Sens. Actuat. B, 2010, 146(1): 381~387. 

    26. [26]

      S W Lee, A Izumi Ichinose, T Kunitake. Langmuir, 1998, 14(10): 2857~2863. 

    27. [27]

      J Kupis-Rozmysłowicz, M Wagner, J Bobacka et al. Electrochim. Acta, 2016, 188: 537~544. 

    28. [28]

      F T Moreira, R A Dutra, J P Noronha et al. Biosens. Bioelectron., 2011, 26(12): 4760~4766.

    29. [29]

       

    30. [30]

       

    31. [31]

      N Xiao, J Deng, J Cheng et al. Biosens. Bioelectron., 2016, 81: 54~60. 

    32. [32]

      T Kobayashi, Y Murawaki, P S Reddy et al. Anal. Chim. Acta, 2001, 435(1): 141~149. 

    33. [33]

       

    34. [34]

      T L Panasyuk, V M Mirsky, S A Piletsky et al. Anal. Chem., 1999, 71(20): 4609~4613.

    35. [35]

       

    36. [36]

      B D B Tiu, R J Krupadam, R C Advincula. Sens. Actuat. B, 2016, 228: 693~701. 

    37. [37]

      E P Lai, A Fafara, V A Vandernoot et al. Can. J. Chem., 1998, 76(3): 265~273. 

    38. [38]

      M L Yola, T Eren, N Atar. Sens. Actuat. B, 2014, 195(195): 28~35. 

    39. [39]

      M L Yola, N Atar, T Eren. Sens. Actuat. B, 2014, 198(198): 70~76. 

    40. [40]

      T Matsunaga, T Hishiya, T Takeuchi. Anal. Chim. Acta, 2007, 591(1): 63~67. 

    41. [41]

      J R L Guerreiro, V E Bochenkov, K Runager et al. ACS Sens., 2016, 1(3): 258~264.

    42. [42]

      L Uzun, A P F Turner. Biosens. Bioelectron., 2016, 76: 131~144. 

    43. [43]

      E Baltussen, P Sandra, F David et al. J. Microcolumn Sep., 1999, 11(10): 737~747.

    44. [44]

      M Kawaguchi, R K Ito, H Nakazawa. J. Pharm. Biomed. Anal., 2006, 40(3): 500~508. 

    45. [45]

      M L Yola, V K Gupta, N Atar. Mater. Sci. Eng. C, 2016, 61: 368~375. 

    46. [46]

      B Ertan, T Eren, I Ermis et al. J. Colloid Interf. Sci., 2016, 470: 14~21. 

    47. [47]

      M S Dopico, M V González, J M Castro et al. J. Chromatogr. Sci., 2002, 40(9): 523~528. 

    48. [48]

      S H Tseng, Y J Lin, P C Chang et al. J. Food Drug Anal., 2004, 12(3): 238~243. 

    49. [49]

      Y Fuchiwaki, H Suzuki, N Sasaki et al. J. Sens., 2009: 11~15.

    50. [50]

      H Katsumata, A Fujii, S Kaneco et al. Talanta, 2005, 65(1): 129~134. 

    51. [51]

      P Yan, X Ying, L Jing et al. Anal. Chim. Acta, 2010, 674(2): 190~200. 

    52. [52]

      R Zhu, W Zhao, M Zhai et al. Anal. Chim. Acta, 2010, 658(2): 209~216. 

    53. [53]

      C Zhai, Q Lu, X Chen et al. J. Chromatogr. A, 2009, 1216(12): 2254~2262. 

    54. [54]

      F Yang, J Mao, X W He et al. Anal. Bioanal. Chem., 2013, 405 (15): 5321~5331. 

    55. [55]

      D Gao, Z Zhang, M Wu et al. J. Am. Chem. Soc., 2007, 129(25): 7859~66.

    56. [56]

      T Lei, W Li, L He et al. J. Chromatogr. A, 2014, 1336 (7): 59~66.

    57. [57]

      C Hu, J Deng, X Xiao et al. Electrochim. Acta, 2015, 158: 298~305.

    58. [58]

       

    59. [59]

       

    60. [60]

      X Li, B Zhang, W Li et al. Biosens. Bioelectron., 2014, 51: 261~267.

    61. [61]

      Z Zhang, J Li, J Fu et al. RSC Adv., 2014, 4(40): 20677~20685.

    62. [62]

       

    63. [63]

       

    64. [64]

      H F Wang, Y He, T R Ji et al. Anal. Chem., 2009, 81 (81): 1615~1621. 

    65. [65]

      Y Zhou, Z B Qu, Y Zeng et al. Biosens. Bioelectron., 2014, 52(52C): 317~323. 

    66. [66]

      W Zhang, W Liu, P Li et al. Angew. Chem. Int. Ed., 2014, 53(46): 12489~12493. 

    67. [67]

      R Jalili, M Amjadi. RSC Adv., 2015, 5(90): 74084~74090.

    68. [68]

      X Wang, Q Kang, D Shen et al. Talanta, 2014, 124(13): 7~13. 

    69. [69]

      P Zhao, J Yu, S Liu et al. Sens. Actuat. B, 2012, 162(1): 166~172. 

    70. [70]

      C Xie, H Li, S Li et al. Microchim. Acta, 2011, 174(3/4): 311~320. 

    71. [71]

       

    72. [72]

      Z R Long, W W Xu, Y Lu et al. J. Chromatogr. B, 2016, 1029~1030: 230~238.

    73. [73]

      Z R Long, Y Lu, M L Zhang et al. J. Sep. Sci., 2014, 37: 2764~2770.

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

Metrics
  • PDF Downloads(10)
  • Abstract views(4432)
  • HTML views(445)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return