Citation: WANG Hai-yan, SONG Pan-pan, WANG Yu-jia. Influence of hierarchically mesoporous Hβ zeolite on the performance of NiWP/Hβ-Al2O3 catalysts in diesel oil hydro-upgrading[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 470-476. shu

Influence of hierarchically mesoporous Hβ zeolite on the performance of NiWP/Hβ-Al2O3 catalysts in diesel oil hydro-upgrading

  • Corresponding author: WANG Hai-yan, fswhy@126.com
  • Received Date: 9 November 2015
    Revised Date: 30 January 2016

Figures(9)

  • Hβ-Al2O3 composite supports were prepared through mechanically mixing Al2O3 with hierarchically mesoporous Hβ zeolite obtained by desilication with NaOH solution; bifunctional NiWP/Hβ-Al2O3 catalysts were then obtained by impregnation method. The composite supports and NiWP/Hβ-Al2O3 catalysts were characterized by XRD, BET and NH3-TPD; the effect of Hβ addition on the catalytic performance of NiWP/Hβ-Al2O3 in diesel oil hydro-upgrading was investigated in a fixed bed reactor with fluid catalytic cracking (FCC) diesel as the feed. The results showed that by adding 15% Hβ in the Hβ-Al2O3 composite support, NiWP/Hβ-Al2O3 catalyst performs best in diesel oil hydro-upgrading; under 360 ℃, 8 MPa, volume space velocity of 1.0 h-1 and volumetric hydrogen/oil ratio of 800, the desulfurization degree reaches 99.77%, the density of FCC diesel oil is decreased from 0.927 to 0.837 g/cm3, while the cetane value is increased from 13.78 to 55.39.
  • 加载中
    1. [1]

      WANG Fu-jiang, ZHANG Yu-ying, LONG Xiang-yun, GAO Xiao-dong. Study on cetane number improvement of LCO by hydrotreating[J]. Pet Process Petrochem, 2013,44(10):27-31.  

    2. [2]

      WANG Hong-kui, WANG Jin-liang, HE Guan-wei, LÜ Hong-an, BIAN Wen. Research advance in diesel hydro-upgrading technology[J]. Ind Catal, 2013,21(10):16-20.  

    3. [3]

      DU Yan-ze, QIAO Nan-sen, WANG Feng-lai, GUAN Ming-hua. Study on the catalytic performance of zeolite beta in hydrocracking[J]. Pet Process Petrochem, 2011,42(8):22-26.

    4. [4]

      ALI M A, TATSUMI T, MASUDA T. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zaolites as catalyst supports[J]. Appl Catal A: Gen, 2002,233(1/2):77-99.  

    5. [5]

      ZHANG Kong-yuan, LIU Wei-liang, LIU Chen-guang. FCC LCO hydro-upgrading catalysts with beta zeolite as acid component[J]. Ind Catal, 2014,22(1):39-43.  

    6. [6]

      LIU Shu-ping, YUE Ming-bo, WANG Yi-meng. One-step synthesis of mesoporous beta zeolite using phosphate[J]. Acta Phys-Chim Sin, 2010,26(8):2224-2228.  

    7. [7]

      RAC V, RAKIC V, STOSIC D, AUROUX A. Hierarchical ZSM-5, Beta and USY zeolites: Acidity assessment by gas and aqueous phase calorimetry and catalytic activity in fructose dehydration reaction[J]. Microporous Mesoporous Mater, 2014,194(30):126-134.  

    8. [8]

      JIA Dan-dan, SU Ming-jin, ZHANG Xing-gang, SONG Lin-hua, JIANNG Cui-yu. Synthesis of ethyl anthraquinone over Hβ zeolites modified by acid[J]. Ind Catal, 2014,22(6):466-472.  

    9. [9]

      ZHAO Pei-xia, LIU Jing. Study on physical chemistry properties of modified Naβ zeolite[J]. Henan Chem Ind, 2008,25(1):21-24.  

    10. [10]

      XU Cong, HAN Ming-han, WANG De-zheng, JIN Yong. Effect of HF treatment on structure and acidity of β zeolite[J]. Chin J Catal, 2002,23(4):371-375.  

    11. [11]

      PENG Peng, ZHANG Zhan-xu, WANG You-he, SUBHAN F, YAN Zi-feng. Hierarchical molecular sieves synthesis and catalytic applications[J]. Prog Chem, 2013,25(12):2028-2036.  

    12. [12]

      SHEN Ben-xian. Petroleum Refining Technology[M]. 1st ed. Beijng: Sinopec Press, 2010, 86.

    13. [13]

      SHI Gang, LIN Xiu-ying, FAN Yu, BAO Xiao-jun. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading[J]. J Fuel Chem Technol, 2013,41(5):589-600.  

    14. [14]

      SONG Yue-qin, LIU Feng, KANG Cheng-lin, FENG Yan-long, ZHOU Xiao-long, DONG Ren-yao, XU Long-ya. Alkali treatment for improving isomerization performance of Pt/ZSM-5[J]. Chin J Catal, 2009,30(2):159-164.  

    15. [15]

      WILLIAMS B A, BABITZ S M, MILLER J T, SNURR R Q, KUNG H H. The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites[J]. Appl Catal A: Gen, 1999,177(2):161-175. doi: 10.1016/S0926-860X(98)00264-6

    16. [16]

      LIU Chun-yan, CHE Yan-chao, CAO Zu-bin, GAO Peng, WANG Yan-ping. Studies on FCC gasoline hydroupgrading over modified Hβ zeolite catalyst[J]. J Fuel Chem Technol, 2004,32(3):367-371.  

    17. [17]

      LI Cheng-yong, HUANG Hua. Effects of acidity of the carrier on tolerance to sulfur of nickel-based catalysts for aromatic hydrogenation[J]. Ind Catal, 2006,14(6):16-19.  

    18. [18]

      YASUDA H, SATO T, YOSHIMURA Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation[J]. Catal Today, 1999,50(1):63-71. doi: 10.1016/S0920-5861(98)00463-5

    19. [19]

      LIU Da-peng, LI Yong-dan. Recent advances in sulfur resistant aromatic hydrogenation catalysts[J]. Prog Chem, 2004,16(6):891-899.  

    20. [20]

      WEI Qiang, ZHOU Ya-song, WEN Shi-chang, XU Chun-ming. Mixed support of Y zeolite and titania silica composite oxide for the heavy oil hydrotreating catalyst[J]. J Fuel Chem Technol, 2009,37(4):448-453.  

    21. [21]

      DUAN Tong-jun. Study of the hydroupgrading catalysts and technology for poor diesel oil[D]. Qingdao: China University of Petroleum, 2011.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    13. [13]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(0)
  • Abstract views(1228)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return