Citation: ZHANG Qiang, MA Xiao-yue, LIU Lu. Effect of seed form on the structure and properties of as-synthesized SAPO-34 molecular sieves and their catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1225-1230. shu

Effect of seed form on the structure and properties of as-synthesized SAPO-34 molecular sieves and their catalytic performance in the conversion of methanol to olefins

  • Corresponding author: ZHANG Qiang, xyz@upc.edu.cn
  • Received Date: 17 April 2018
    Revised Date: 7 July 2018

    Fund Project: the National Natural Science Foundation of China 21406270The project was supported by the National Natural Science Foundation of China (21406270)

Figures(4)

  • A series of SAPO-34 molecular sieves with low Si/Al ratio were synthesized by conventional hydrothermal method as well as adding powder crystal seed and liquid crystal seed containing SAPO-34 precursor. These SAPO-34 molecular sieves were characterized by XRD, SEM, FT-IR and NH3-TPD and the effects of synthesis method on the structure, morphology, crystal size and acidity of the resultant SAPO-34 molecular sieves as well as their catalytic performance in the conversion of methanol to olefins (MTO) were investigated. The results indicate that although the seed form has little influence on the crystallinity, the silicon distribution in SAPO-34 framework, crystal size, and acidic properties are strongly related to the seed form. In comparison with the SAPO-34 sample synthesized with powder form seed, the SAPO-34 molecular sieves prepared using liquid crystal seed containing SAPO-34 precursor exhibit smaller crystal size, weaker acidic strength, and higher selectivity to light olefins in MTO.
  • 加载中
    1. [1]

      LI Z, MARTÍNEZ-TDIGUERO J, CONCEPCIÓN P, YU J, COEMA A. Methanol to olefins:Activity and stability of nanosized SAPO-34molecular sieves and control of selectivity by silicon distribution[J]. Phys Chem Chem Phys, 2013,15(35):14670-14680. doi: 10.1039/c3cp52247d

    2. [2]

      HAJIASHRAFI T, NEMATI K A. Study of preparation methods and their effect on the morphology and texture of SAPO-34 for the methanol to olefin reaction[J]. React Kinet Mech Catal, 2013,108(2):417-432. doi: 10.1007/s11144-012-0520-7

    3. [3]

      IZADBAKHSH A, FARHADI F, KHORASHEH F, SAHEBDELFAR S, ASADI M, ZI FENG Y. Effect of SAPO-34's composition on its physico-chemical properties and deactivation in MTO process[J]. Appl Catal A:Gen, 2009,364(1/2):48-56.  

    4. [4]

      ASKARI S, HALLADJ R, SOHRABI M. An overview of the effects of crystallization time, template and silicon sources on hydrothermal synthesis of SAPO-34 molecular sieve with small crystals[J]. Rev Adv Mater Sci, 2012,32(2):83-93.  

    5. [5]

      CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Microporous Mesoporous Mater, 2005,82(1):1-78.  

    6. [6]

      SEDIGHI M, TOWFIGHI J, MOHAMADALIZADEH A. Effect of phosphorus and water contents on physico-chemical properties of SAPO-34 molecular sieve[J]. Powder Technol, 2014,259(2):81-86.  

    7. [7]

      HIROTA Y, MURATA K, TANAKA S, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Dry gel conversion synthesis of SAPO-34 nanocrystals[J]. Mater Chem Phys, 2010,123(2):507-509.  

    8. [8]

      WU L, LIU Z, QIU M, YANG C, XIA L, LIU X, SUN Y. Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction[J]. React Kinet Mech Catal, 2014,111(1):319-334. doi: 10.1007/s11144-013-0639-1

    9. [9]

      ASKARI S, HALLADJ R. Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals[J]. Ultrason Sonochem, 2012,19(3):554-559. doi: 10.1016/j.ultsonch.2011.09.006

    10. [10]

      SÁNCHEZ-SÁNCHEZ M, ROMERO Á A, PINILLA-HERRERO I, SASTRE E. Ionothermal preparation of triclinic SAPO-34 and its catalytic performance in the MTO process[J]. Catal Today, 2017,296:239-246. doi: 10.1016/j.cattod.2017.04.065

    11. [11]

      JÚNIOR L V D S, SILVA A O S, SILVA B J B, ALENCAR S L. Synthesis of ZSM-22 in static and dynamic system using seeds[J]. Mod Res Catal, 2014,3(2):49-56. doi: 10.4236/mrc.2014.32007

    12. [12]

      WU Q, NARTEY I, HUANG Y, FANG Y. Synthesis of hierarchical SAPO-11 via seeded crystallization[J]. Microporous Mesoporous Mater, 2015,218:24-32. doi: 10.1016/j.micromeso.2015.06.040

    13. [13]

      WANG Y, WANG X, WU Q, MENG X, JI NY, ZHOU X, XIAO F S. Seed-directed and organotemplate-free synthesis of TON zeolite[J]. Catal Today, 2014,226(11):103-108.  

    14. [14]

      SOUSA L V, SILVA A O S, SILVA B J B, TEIXEIRA CM, ARCANJO AP, FRETY R, PACHECOA J G. A Fast synthesis of ZSM-22 zeolite by the seed-assisted method of crystallization with methanol[J]. Microporous Mesoporous Mater, 2017,254:192-200. doi: 10.1016/j.micromeso.2017.04.003

    15. [15]

      WILSON S, BARGER P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins[J]. Microporous Mesoporous Mater, 1999,29(1/2):117-126.  

    16. [16]

      IZADBAKHSH A, FARHADI F, KHORASHEH F, SAHEBDELFAR S, ASADI M, YAN Z F. Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve[J]. Microporous Mesoporous Mater, 2009,126(1/2):1-7.  

    17. [17]

      DI Chun-yu, ZHANG He, XU Dan, LI Xiao-feng, DOU Tao. Synthesis of SAPO-34 molecular sieves by seed gel method and their catalytic performance in methanol to olefins reaction[J]. Ind Catal, 2012,20(2):33-37. doi: 10.3969/j.issn.1008-1143.2012.02.008

    18. [18]

      CHEN J, THOMAS J M, WRIGHT P A, TOWNSEND R P. Silicoaluminophosphate number eighteen(SAPO-18):A new microporous solid acid catalyst[J]. Catal Lett, 1994,28(2/4):241-248.  

    19. [19]

      VENNA S R, CARREON M A. Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors[J]. J Phys Chem B, 2008,112(51):16261-16265. doi: 10.1021/jp809316s

    20. [20]

      LIU X, DU S, ZHANG B. Seeded growth of dense and thin SAPO-34 membranes on porousα-Al2O3 substrates under microwave irradiation[J]. Mater Lett, 2013,91:195-197. doi: 10.1016/j.matlet.2012.09.076

    21. [21]

      DAN Bao-song, WANG Wei, ZHAO Feng-wei, YANG Jan-ming, CUI Wen-hua, LÜ Jian. Synthesis of SAPO-34 molecular sieve[J]. Ind Catal, 2010,18(9):52-54. doi: 10.3969/j.issn.1008-1143.2010.09.010

    22. [22]

      XU Ruren. Molecular Sieves and Porous Materials Chemistry[C]. Beijing: Science Press, 2004, 39.

    23. [23]

      ZHAO Dong-pu, ZHAO Quan-sheng, ZHANG Yan, SHI Tuo, YAO Heng-guo, YU Jian-qiang. Synthesis and characterization of intergrowth structured SAPO-18/SAPO-34[J]. Chem J Chin Univ, 2016,37(2):342-348.  

    24. [24]

      NAJAFI N, ASKARI S, HALLADJ R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multitemplates[J]. Powder Technol, 2014,254(25):324-330.  

    25. [25]

      TAN J, LIU Z, BAO X H. Crystallization and Si incorporation mechanisms of SAPO-34[J]. Microporous Mesoporous Mater, 2002,53(1/3):97-108.  

    26. [26]

      KIKHTYANIN O V, TOKTAREV A V, AYUPOV A B, ECHEVSKY G V. Influence of crystallinity on the physico-chemical properties of SAPO-31 and hydro conversion of n-octane over Pt loaded catalysts[J]. Appl Catal A:Gen, 2010,378(1):96-106. doi: 10.1016/j.apcata.2010.02.005

    27. [27]

      LIU G, TIAN P, LIU Z. Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with oher templates[J]. Chin J Catal, 2012,33(1):174-182. doi: 10.1016/S1872-2067(10)60325-2

    28. [28]

      FIGUEIREDOA A L, ARAUJOA A S, LINARESB M, LINARES M, GARCIA P Á, SERRANO D P, FERNANDES JR V J. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeoliteprepared by seed-assisted synthesis from an organic-template-freesystem[J]. J Anal Appl Pyrolysis, 2016,117:132-140. doi: 10.1016/j.jaap.2015.12.005

    29. [29]

      IZADBAKHSH A, FARHADI F, KHORASHEH F, SAHEBDELFAR S, ASADI M, YAN Z F. Effect of SAPO-34's composition on its physicochemical properties and deactivation in MTO process[J]. Appl Catal A:Gen, 2009,364(1/2):48-56.  

    30. [30]

      AGHAMOHAMMADI S, HAGHIGHI M. Dual-template synthesis of nanostructured CoAPSO-34 used inmethanol to olefins:Effect of template combinations on catalytic performance and coke formation[J]. Chem Eng J, 2015,264:359-375. doi: 10.1016/j.cej.2014.11.102

    31. [31]

      RAHIMI K, TOWFIGHI J, SEDIGHI M, MASOUMI S, KOOSHKI Z. The effects of SiO2/Al2O3 and H2O/Al2O3 molar ratios on SAPO-34 catalysts in methanol to olefins (MTO) process using experimental design[J]. J Ind Eng Chem, 2016,35:123-131. doi: 10.1016/j.jiec.2015.12.015

    32. [32]

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    3. [3]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    11. [11]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    19. [19]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(6)
  • Abstract views(975)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return