Citation: SONG Yin-min, LI Na, BAN Yan-peng, TENG Ying-yue, ZHI Ke-duan, HE Run-xia, ZHOU Hua-cong, LIU Quan-sheng. Microstructure evolution characteristics of Shengli lignite during combustion process[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1417-1423. shu

Microstructure evolution characteristics of Shengli lignite during combustion process

  • Corresponding author: LIU Quan-sheng, liuqs@imut.edu.cn
  • Received Date: 6 June 2017
    Revised Date: 14 September 2017

    Fund Project: Natural Science Foundation of Inner Mongolia 2014MS0220Natural Science Foundation of Inner Mongolia 2015BS0206Natural Science Foundation of Inner Mongolia 2017MS0201the National Natural Science Foundation of China 21676149the National Natural Science Foundation of China 21606134the National Natural Science Foundation of China 21766023Natural Science Foundation of Inner Mongolia 2016BS0204the National Natural Science Foundation of China 21566028the National Natural Science Foundation of China 21266017The project was supported by the National Natural Science Foundation of China (21676149, 21606134, 21566029, 21566028, 21266017, 21766023), Natural Science Foundation of Inner Mongolia (2014MS0220, 2015BS0206, 2016BS0204, 2017MS0201), Plan of Scientific and Technology of Inner Mongolia, Incentive Fund for the Scientific and Technology Innovation Program of Inner Mongolia and Major Basic Research Open Programs of Inner Mongoliathe National Natural Science Foundation of China 21566029

Figures(7)

  • The combustion of Shengli lignite demineralized with hydrochloric acid was carried and residues from different reaction conditions were obtained. The microstructural properties of the lignite and residues were examined by FT-IR, XRD, XPS and Raman, respectively. The results indicate that aliphatic functional groups were consumed during combustion, while oxygen-containing groups and aromatic structure were consumed and generated alternatively. The proportion of C-C/C-H structure decreased after increasing, while the content of carbon-oxygen structure was increased following decrease. The aromaticity of residues increased and ID/IG increased before decrease, while IS/IG decreased before increase. This indicated that graphitization transformation degree of lignite obviously increased during combustion, especially in the late stage of reaction.
  • 加载中
    1. [1]

      YANG X J, ZHANG C, TAN P, TANG T, YANG T, FANG Q Y, CHEN G. Properties of upgraded Shengli lignite and its behavior of gasfication[J]. Energy Fuels, 2014,28(1):264-274. doi: 10.1021/ef401497a

    2. [2]

      GAN Xiang-ping. Study on characteristics of blended coal which formed by lignite, bituminous coal, anthracite[D]. Kunming:Kunming University of Science and Technology, 2013. 

    3. [3]

      SUN Yun, WANG Chang-an, LIU Jing-yan, CHE De-fu. Research process on blended coal combustion[J]. Power Sys Eng, 2011,27(2):1-3.  

    4. [4]

      LI Chun-zhu, YU Jiang-long, CHANG Li-ping. Advances in the Science of Victorian Brown Coal[M]. Beijing:Chemical Industry Press, 2009.

    5. [5]

      MEGARITIS A, MESSENBOCK R C. High-pressure pyrolysis and CO2 gasification of coal maceral concentrates conversion and char combustion reactivities[J]. Fuel, 1999,78(8):871-882. doi: 10.1016/S0016-2361(99)00003-4

    6. [6]

      MENDEZ L B, BORREGO A G, MARTINEZ T M R, MENENDEZ R. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity[J]. Fuel, 2003,82:1875-1882. doi: 10.1016/S0016-2361(03)00190-X

    7. [7]

      RUBIERA T, ARENILLAS A, PEVIDA C, GAICIA R. Coal structure and reactivity changes induced by chemical demineralization[J]. Fuel Process Technol, 2002,79(3):273-279. doi: 10.1016/S0378-3820(02)00185-6

    8. [8]

      TEKELY P, NICOLE D, DELPUECH J J. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolusion solid state 13C NMR[J]. Fuel Process Technol, 1987,15:225-231.  

    9. [9]

      ACMA H H, YAVUZ R, MERICBOYU A E, KUCUKBAYRAK S. Effect of mineral matter on the reactivity of lignite[J]. Thermochim Acta, 1999,342:79-84. doi: 10.1016/S0040-6031(99)00209-9

    10. [10]

      YURUM Y, ALTUNTAS N. Air oxidation of Beypazari lignite at 50℃, 100℃ and 150℃[J]. Fuel, 1998,77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2

    11. [11]

      YAN Rong-lin, QIAN Guo-yin. Molecular structure of coal and gases produced by coal oxidation[J]. J Chin Coal Soc, 1995,20(S1):58-64.  

    12. [12]

      ZHANG Guo-shu, XIE Ying-ming, GU Jian-ming. Infrared spectral analysis of microstructure change during the coal spontaneous oxidation[J]. J Chin Coal Soc, 2003,28(5):473-476.  

    13. [13]

      DONG Qing-nian, CHEN Xue-yi, JIN Guo-qiang, GU Yong-da. Study of lignite oxidation at low temperature by FT-IR emission spectroscopy[J]. J Fuel Chem Technol, 1997,25:333-338.  

    14. [14]

      DAI Guang-long. Research on microcrystalline structure change regularity in the coal low temperature oxidation process[J]. J Chin Coal Soc, 2011,36:322-325.  

    15. [15]

      SONG Y M, FENG W, LI N, LI Y, ZHI K D, TENG Y Y, HE R X, ZHOU H C, LIU Q S. Effects of demineralization on the Structure and Combustion Properties of Shengli Lignite[J]. Fuel, 2016,183:659-667. doi: 10.1016/j.fuel.2016.06.109

    16. [16]

      SONG Yin-min, FENG Wei, WANG Yun-fei, LI Na, BAN Yan-peng, TENG Ying-yue, ZHI Ke-duan, HE Run-xia, ZHOU Hua-cong, LIU Quan-sheng. Structure characteristics of unreacted residues in the processes of Shengli lignite combustion and effect of adding Fe components[J]. J Fuel Chem Technol, 2016,44(12):1447-1456. doi: 10.3969/j.issn.0253-2409.2016.12.006 

    17. [17]

      LI Y, ZHOU C L, LI N, ZHI K D, SONG Y M, HE R X, TENG Y Y, LIU Q S. Production of high H2/CO syngas by steam gasification of Shengli lignite:catalytic effect of inherent minerals[J]. Energy Fuels, 2015,29:4738-4746. doi: 10.1021/acs.energyfuels.5b00168

    18. [18]

      SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. J Chem Ind Eng, 2010,61:3220-3227.  

    19. [19]

      SHINN J H. From coal to sigle stage and two stages products:A reactive model of coal structure[J]. Fuel, 1984,63:1187-1196. doi: 10.1016/0016-2361(84)90422-8

    20. [20]

      TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using cirect techniques (solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011,25:4006-4013. doi: 10.1021/ef200738p

    21. [21]

      WANG Y G, WEI X Y, XIE R L, LIU F J, LI P, ZONG Z M. Structural characterization of typical organic species in Jincheng No.15 anthracite[J]. Energy Fuels, 2015,29:595-601. doi: 10.1021/ef502373p

    22. [22]

      LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015,153:176-182. doi: 10.1016/j.fuel.2015.02.117

    23. [23]

      GENG W H, YASUTAKA K, TSUNENORI N, HIROKAZU T, AKIRA O. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009,88:644-649. doi: 10.1016/j.fuel.2008.09.025

    24. [24]

      CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006,34:389-394. doi: 10.3969/j.issn.0253-2409.2006.04.002 

    25. [25]

      ANDREDA S M, ANDRE S M, ANTONIO C F V, EDUARDO O. Study of coal, char and coke fines structures and their proportions in the off-gas blast furnace samples by X-ray diffraction[J]. Fuel, 2013,114:224-228. doi: 10.1016/j.fuel.2012.07.064

    26. [26]

      OLUWADAYO O S, TOBIAS H, STEPHEN F F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010,35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025

    27. [27]

      GUEDES A, VALENTIM B, PRIETO A C, NORONHA F. Raman spectroscopy of coal macerals and fluidized bed char morphotypes[J]. Fuel, 2012,97:443-449. doi: 10.1016/j.fuel.2012.02.054

    28. [28]

      LI X J, HAYASHI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolisis of a Victorian brown coal[J]. Fuel, 2006,85:1700-1707. doi: 10.1016/j.fuel.2006.03.008

    29. [29]

      LI Mei-fen, ZENG Fan-gui, QI Fu-hui, SUN Bei-lei. Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters[J]. Spectr Spect Anal, 2009,29:2446-2449.  

    30. [30]

      GONG Xu-zhong, GUO Zhan-cheng, WANG Zhi. Effects of Fe2O3 on pyrolysis reactivity of demineralized higher rank coal and its char structure[J]. J Chem Ind Eng, 2009,60(9):2321-2325.  

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(2)
  • Abstract views(1124)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return