Citation: Mei Lei, Shi Weiqun. Construction Principles and Research Progress of Typical Actinide Supramolecular Assemblies[J]. Chemistry, ;2020, 83(5): 387-393. shu

Construction Principles and Research Progress of Typical Actinide Supramolecular Assemblies

  • Received Date: 18 December 2019
    Accepted Date: 4 February 2020

Figures(4)

  • Actinide supermolecular chemistry is one of the recently emerging research areas of actinide chemistry, which can provide important information for the basic research of coordination chemistry of spent fuel reprocessing, and also explore the function and potential application of actinide functional materials in the fields of luminescence, catalysis, separation et al. This review will introduce recent progresses in actinide-based supramolecular assemblies. Starting from the construction principle of actinide-based supramolecular assemblies, and in combination with the author's own research works, the progresses of three typical kinds of actinide supramolecular assemblies including actinide-rotaxane complexes based on host-guest rotaxane ligands, actinide coordination complexes with closed structures and actinide supramolecular polymers based on supramolecular interactions are reviewed and summarized. We hope the paper can provide a reference for the design and synthesis of new actinide-based supramolecular assemblies in the future and promote the development of related fields of actinide chemistry and mateirals.
  • 加载中
    1. [1]

      Lehn J M. Science, 1985, 227(4689): 849~856. 

    2. [2]

      Lehn J M. Science, 1993, 260(5115): 1762~1763. 

    3. [3]

      Lehn J M. Chem. Soc. Rev., 2017, 46(9): 2378~2379. 

    4. [4]

      Lehn J M. Chem. Soc. Rev., 2007, 36(2): 151~160. 

    5. [5]

      Lehn J M. Angew. Chem. Int. Ed., 1990, 29(11): 1304~1319. 

    6. [6]

      Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104(5): 2723~2750. 

    7. [7]

      Alexander V. Chem. Rev., 1995, 95: 273~342. 

    8. [8]

      Zhang Y J, Bhadbhade M, Avdeev M, et al. Inorg. Chem., 2018, 57(14): 8588~8598. 

    9. [9]

      Zhang Y, Lu K, Liu M, et al. Dalton Transac., 2020, 49(2): 404~410. 

    10. [10]

      An S, Mei L, Hu K, et al. Inorg. Chem., 2020, 59(1): 943~955. 

    11. [11]

      Mei L, Wu Q Y, Liu C M, et al. Chem. Commun., 2014, 50(27): 3612~3615. 

    12. [12]

      Mei L, Xie Z N, Hu K Q, et al. Dalton Transac., 2016, 45(34): 13304~13307. 

    13. [13]

      Mei L, Wu Q Y, Yuan L Y, et al. Chem. Eur. J., 2016, 22(32): 11329~11338. 

    14. [14]

      Mei L, Wang L, Liu C M, et al. Chem. Eur. J., 2015, 21(28): 10226~10235. 

    15. [15]

      Li F Z, Mei L, Hu K Q, et al. Inorg. Chem., 2018, 57(21): 13513~13523. 

    16. [16]

      Mei L, Xie Z N, Hu K Q, et al. Chem. Eur. J., 2017, 23(56): 13995~14003. 

    17. [17]

      Z N Xie, Mei L, Q Y Wu, et al. Dalton Transac., 2017, 46(23): 7392~7396. 

    18. [18]

      Ge Y C, Mei L, Xie Z N, et al. Chem. Eur. J., 2017, 23(35): 8380~8384. 

    19. [19]

      Xie Z N, Mei L, Hu K Q, et al. Inorg. Chem., 2017, 56(6): 3227~3237. 

    20. [20]

      Thuery P, Villiers C, Jaud J, et al. J. Am. Chem. Soc., 2004, 126(22): 6838~6839. 

    21. [21]

      Pasquale S, Sattin S, Escudero-Adan E C, et al. Nat. Commun., 2012, 3: 785. 

    22. [22]

      Krivovichev S V, Kahlenberg V, Tananaev I G, et al. J. Am. Chem. Soc., 2005, 127(4): 1072~1073. 

    23. [23]

      Krivovichev S V, Kahlenberg V, Kaindl R, et al. Angew. Chem. Int. Ed., 2005, 44(7): 1134~1136. 

    24. [24]

      Thuery P. Cryst. Growth Des., 2014, 14(3): 901~904. 

    25. [25]

      Mihalcea I, Henry N, Loiseau T. Cryst. Growth Des., 2011, 11(5): 1940~1947. 

    26. [26]

      Burns P C, Kubatko K A, Sigmon G, et al. Angew. Chem. Int. Ed., 2005, 44(14): 2135~2139. 

    27. [27]

      Qiu J, Burns P C. Chem. Rev., 2013, 113(2): 1097~1120. 

    28. [28]

      Sigmon G E, Unruh D K, Ling J, et al. Angew. Chem. Int. Ed., 2009, 48(15): 2737~2740. 

    29. [29]

      Soderholm L, Almond P M, Skanthakumar S, et al. Angew. Chem. Int. Ed., 2008, 47(2): 298~302. 

    30. [30]

      Falaise C, Volkringer C, Vigier J F, et al. J. Am. Chem. Soc., 2013, 135(42): 15678~15681. 

    31. [31]

      Albrecht-Schmitt T E. Angew. Chem. Int. Ed., 2005, 44(31): 4836~4838. 

    32. [32]

      Andrews M B, Cahill C L. Chem. Rev., 2013, 113(2): 1121~1136. 

    33. [33]

      Serezhkin V N, Grigoriev M S, Savchenkov A V, et al. Inorg. Chem., 2019, 58(21): 14577~14585. 

    34. [34]

      Surbella R G, Ducati L C, Autschbach J, et al. Inorg. Chem., 2018, 57(5): 2455~2471. 

    35. [35]

      Andrews M B, Cahill C L. Dalton Transac., 2012, 41(14): 3911~3914. 

    36. [36]

      Mei L, Wang C Z, Wang L, et al. Cryst. Growth Des., 2015, 15(3): 1395~1406. 

    37. [37]

      Mei L, Wu Q Y, An S W, et al. Inorg. Chem., 2015, 54(22): 10934~10945. 

    38. [38]

      An S W, Mei L, Wang C Z, et al. Chem. Commun., 2015, 51(43): 8978~8981. 

    39. [39]

      Mei L, Liu K, Wu S, et al. Chem. Eur. J., 2019, 25(44): 10309~10313. 

    40. [40]

      Carter K P, Kalaj M, Cahill C L. Eur. J. Inorg. Chem., 2016, (1): 126~137.

  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    3. [3]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    8. [8]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    9. [9]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    10. [10]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    13. [13]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    16. [16]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    17. [17]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    20. [20]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

Metrics
  • PDF Downloads(9)
  • Abstract views(952)
  • HTML views(224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return