Citation:
Mei Lei, Shi Weiqun. Construction Principles and Research Progress of Typical Actinide Supramolecular Assemblies[J]. Chemistry,
;2020, 83(5): 387-393.
-
Actinide supermolecular chemistry is one of the recently emerging research areas of actinide chemistry, which can provide important information for the basic research of coordination chemistry of spent fuel reprocessing, and also explore the function and potential application of actinide functional materials in the fields of luminescence, catalysis, separation et al. This review will introduce recent progresses in actinide-based supramolecular assemblies. Starting from the construction principle of actinide-based supramolecular assemblies, and in combination with the author's own research works, the progresses of three typical kinds of actinide supramolecular assemblies including actinide-rotaxane complexes based on host-guest rotaxane ligands, actinide coordination complexes with closed structures and actinide supramolecular polymers based on supramolecular interactions are reviewed and summarized. We hope the paper can provide a reference for the design and synthesis of new actinide-based supramolecular assemblies in the future and promote the development of related fields of actinide chemistry and mateirals.
-
-
- [1]
- [2]
- [3]
- [4]
- [5]
-
[6]
Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104(5): 2723~2750.
- [7]
-
[8]
Zhang Y J, Bhadbhade M, Avdeev M, et al. Inorg. Chem., 2018, 57(14): 8588~8598.
-
[9]
Zhang Y, Lu K, Liu M, et al. Dalton Transac., 2020, 49(2): 404~410.
-
[10]
An S, Mei L, Hu K, et al. Inorg. Chem., 2020, 59(1): 943~955.
-
[11]
Mei L, Wu Q Y, Liu C M, et al. Chem. Commun., 2014, 50(27): 3612~3615.
-
[12]
Mei L, Xie Z N, Hu K Q, et al. Dalton Transac., 2016, 45(34): 13304~13307.
-
[13]
Mei L, Wu Q Y, Yuan L Y, et al. Chem. Eur. J., 2016, 22(32): 11329~11338.
-
[14]
Mei L, Wang L, Liu C M, et al. Chem. Eur. J., 2015, 21(28): 10226~10235.
-
[15]
Li F Z, Mei L, Hu K Q, et al. Inorg. Chem., 2018, 57(21): 13513~13523.
-
[16]
Mei L, Xie Z N, Hu K Q, et al. Chem. Eur. J., 2017, 23(56): 13995~14003.
-
[17]
Z N Xie, Mei L, Q Y Wu, et al. Dalton Transac., 2017, 46(23): 7392~7396.
-
[18]
Ge Y C, Mei L, Xie Z N, et al. Chem. Eur. J., 2017, 23(35): 8380~8384.
-
[19]
Xie Z N, Mei L, Hu K Q, et al. Inorg. Chem., 2017, 56(6): 3227~3237.
-
[20]
Thuery P, Villiers C, Jaud J, et al. J. Am. Chem. Soc., 2004, 126(22): 6838~6839.
-
[21]
Pasquale S, Sattin S, Escudero-Adan E C, et al. Nat. Commun., 2012, 3: 785.
-
[22]
Krivovichev S V, Kahlenberg V, Tananaev I G, et al. J. Am. Chem. Soc., 2005, 127(4): 1072~1073.
-
[23]
Krivovichev S V, Kahlenberg V, Kaindl R, et al. Angew. Chem. Int. Ed., 2005, 44(7): 1134~1136.
- [24]
-
[25]
Mihalcea I, Henry N, Loiseau T. Cryst. Growth Des., 2011, 11(5): 1940~1947.
-
[26]
Burns P C, Kubatko K A, Sigmon G, et al. Angew. Chem. Int. Ed., 2005, 44(14): 2135~2139.
- [27]
-
[28]
Sigmon G E, Unruh D K, Ling J, et al. Angew. Chem. Int. Ed., 2009, 48(15): 2737~2740.
-
[29]
Soderholm L, Almond P M, Skanthakumar S, et al. Angew. Chem. Int. Ed., 2008, 47(2): 298~302.
-
[30]
Falaise C, Volkringer C, Vigier J F, et al. J. Am. Chem. Soc., 2013, 135(42): 15678~15681.
-
[31]
Albrecht-Schmitt T E. Angew. Chem. Int. Ed., 2005, 44(31): 4836~4838.
-
[32]
Andrews M B, Cahill C L. Chem. Rev., 2013, 113(2): 1121~1136.
-
[33]
Serezhkin V N, Grigoriev M S, Savchenkov A V, et al. Inorg. Chem., 2019, 58(21): 14577~14585.
-
[34]
Surbella R G, Ducati L C, Autschbach J, et al. Inorg. Chem., 2018, 57(5): 2455~2471.
-
[35]
Andrews M B, Cahill C L. Dalton Transac., 2012, 41(14): 3911~3914.
-
[36]
Mei L, Wang C Z, Wang L, et al. Cryst. Growth Des., 2015, 15(3): 1395~1406.
-
[37]
Mei L, Wu Q Y, An S W, et al. Inorg. Chem., 2015, 54(22): 10934~10945.
-
[38]
An S W, Mei L, Wang C Z, et al. Chem. Commun., 2015, 51(43): 8978~8981.
-
[39]
Mei L, Liu K, Wu S, et al. Chem. Eur. J., 2019, 25(44): 10309~10313.
-
[40]
Carter K P, Kalaj M, Cahill C L. Eur. J. Inorg. Chem., 2016, (1): 126~137.
-
-
-
[1]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[2]
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
-
[3]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[4]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[5]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[6]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[7]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[8]
Xiangli Wang , Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092
-
[9]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[10]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[11]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[12]
Wenjian Zhang , Mengxin Fan , Wenwen Fei , Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099
-
[13]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[14]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[15]
Yonghui Wang , Weilin Chen , Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102
-
[16]
Huan Zhang , Linyu Pu , Wei Wang , Yatang Dai , Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010
-
[17]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[18]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[19]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[20]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[1]
Metrics
- PDF Downloads(9)
- Abstract views(952)
- HTML views(224)