Citation: Ruijun Li, Changlong Zhu, Yibing Ji. Fluorescent Probe for Hg2+ Detection Based on Functionalized Gold Nanorods[J]. Chemistry, ;2021, 84(3): 261-266. shu

Fluorescent Probe for Hg2+ Detection Based on Functionalized Gold Nanorods

  • Corresponding author: Yibing Ji, jiyibing@msn.com
  • Received Date: 17 August 2020
    Accepted Date: 28 October 2020

Figures(9)

  • Bovine serum albumin (BSA) functionalized gold nanorods (BSA-Cys-GNRs) as a fluorescence probe for the detection of Hg2+ has been developed in this work. BSA was successfully modified on the surface of gold nanorods with cysteine as the linker. The materials were characterized by UV-Vis, FL, FT-IR and inverted fluorescence microscopy. The BSA-Cys-GNRs displays strong fluorescence emission peak at 338 nm under excitation at 295 nm. The fluorescence of BSA-Cys-GNRs is strongly quenched upon addition of Hg2+ ions. Effective detection conditions are pH 4.0 and incubating time 5.0 min. Mn2+, K+, Ni2+, Na+, Cr3+, Cd2+, Mg2+, Cu2+, Ca2+, Al3+ and Zn2+ are examined under identical conditions, and all of them do not induce any noticeable responses to BSA-Cys-GNRs. There is a good linear dependence of fluorescence intensity on Hg2+ concentration in the range of 0.04444~8.888 μmol·L-1 with the detection limit of 8.08 nmol·L-1. Furthermore, the method has been applied for the determination of Hg2+ in water samples, and the recoveries are in the range of 98.9%~105.0%.
  • 加载中
    1. [1]

      Boening D W. Chemosphere, 2000, 40(12): 1335~1351. 

    2. [2]

      Kandjani A E, Sabri Y M, Taheri M M, et al. Sci. Technol., 2015, 49(3): 1578~1584. 

    3. [3]

      Wang J, Deng B L, Chen H, et al. Environ. Sci. Technol., 2009, 43(14): 5223~5228. 

    4. [4]

      Guzzi G, La Porta C A M. Toxicology, 2008, 244(1): 1~12. 

    5. [5]

      Kampa M, Castanas E. Environ. Pollut., 2008, 151(2): 362~367. 

    6. [6]

      Luo D, Liu S G, Li N B, et al. Microchim. Acta, 2018, 185(6): 284~292. 

    7. [7]

      Ou L B, Chen C, Chen L, et al. Environ. Sci. Technol., 2015, 49(11): 6899~6908. 

    8. [8]

      Buck K A, Varian-Ramos C W, Cristol D A, et al. PLoS One, 2016, 11(9): 1~14.

    9. [9]

      Zhu X, Alexandratos S D. Microchem. J., 2007, 86(1): 37~41. 

    10. [10]

      Rastogi L, Krishna M V B, Chandrasekaran K, et al. J. Anal. Atom Spectrom., 2014, 29(4): 721~729. 

    11. [11]

      Bagheri H, Naderi M. J. Hazard. Mater., 2009, 165(1): 353~358.

    12. [12]

       

    13. [13]

      Liu Z P, Zhang C L, He W J. Chem. Commun., 2010, 46(36): 6138~6140.

    14. [14]

      Jiao L J, Li J L, Zhang S Z. New J. Chem., 2009, 33(9): 1888~1893. 

    15. [15]

      Aragay G, Pons J, Merkoci A. Chem. Rev., 2011, 111(5): 3433~3458. 

    16. [16]

      Wegner S V, Okesli A, Chen P, et al. J. Am. Chem. Soc., 2007, 129(12): 3474~3475. 

    17. [17]

      Freeman R, Finder T, Willner I. Angew. Chem. Int. Ed., 2009, 48(42): 7818~7821. 

    18. [18]

      Liang X C, Chen S Q, Gao J M, et al. Sens. Actuat. B, 2008, 265(15): 293~301.

    19. [19]

      Guo Y M, Zhang Y, Shao H W, et al. Anal. Chem., 2014, 86(17): 8530~8534. 

    20. [20]

      Pérez-López B, Merkoçi A. Anal. Bioanal. Chem., 2011, 399(4): 1577~1590. 

    21. [21]

      Liu W J, Zhu Z N, Deng K, et al. J. Am. Chem. Soc., 2013, 135(26): 9659~9664. 

    22. [22]

      Ye X C, Zheng C, Chen J, et al. Nano Lett., 2013, 13(2): 765~771. 

    23. [23]

      Sudeep P K, Joseph S T S, Thomas K G. J. Am. Chem. Soc., 2005, 127(18): 6516~6517. 

    24. [24]

      Chen G H, Chen W Y, Yen Y C, et al. Anal. Chem., 2014, 86(14): 6843~6849. 

    25. [25]

      Tang Y C, Ding Y, Wu T, et al. Sens. Actuat. B, 2016, 228(2): 767~773.

    26. [26]

      Huang C C, Chang H T. Anal. Chem., 2006, 78(24): 8332~8338. 

    27. [27]

       

    28. [28]

    29. [29]

      Li R J, Zhu C L, Li W, et al. New J. Chem., 2018, 42(15): 12706~12710. 

    30. [30]

      Gui R J, Jin H, Wang Y F, et al. Sens. Actuat. B, 2017, 245: 386~394. 

    31. [31]

      Zhang H, Nie C, Wang J H, et al. Talanta, 2019, 195: 713~719. 

    32. [32]

      Zheng B Z, Zheng J, Yu T, et al. Sens. Actuat. B, 2015, 221: 386~392. 

    33. [33]

      Kawasaki H, Yoshimur K, Hamaguchi K, et al. Anal. Sci., 2011, 27(6): 591~596. 

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    5. [5]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    6. [6]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    9. [9]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    14. [14]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    15. [15]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(6)
  • Abstract views(1027)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return