Citation: ZHANG Xiu-xia, LÜ Xiao-xue, WU Hui-xi, XIE Miao, LIN Ri-yi, ZHOU Zhi-jun. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 663-673. shu

Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char

  • Corresponding author: ZHANG Xiu-xia, zhangxx@upc.edu.cn
  • Received Date: 6 May 2020
    Revised Date: 10 June 2020

    Fund Project: the Fundamental Research Funds for the Central Universities 18CX02073AThe project was supported by the Fundamental Research Funds for the Central Universities (18CX02073A) and National Natural Science Foundation of China (51874333)National Natural Science Foundation of China 51874333

Figures(11)

  • A thorough theoretical exploration of microscopic mechanism for effect of sodium (Na) on nitric oxide (NO) heterogeneous reduction by char was performed based on density functional theory with consideration of London dispersion interaction. Calculation results show that the Na atom could migrate at edge of char and prefers to be incorporated into a five-atom ring forming a pentagon with 174.2 kJ/mol released. A strong electrostatic attraction between the Na atom and carbon atoms at the edge is found by reduced density gradient analysis. Electrons transfer from the Na atom to char, resulting in electron rearrangement on char. It is the most stable mode for adsorption of the first NO molecule when O atom in NO molecule is adjacent to the Na atom. The doping of Na could promote adsorption of the first NO molecule, but has little effect on that of the second NO molecule. The intrinsic reaction coordinate calculations and Mayer bond order analyses suggest that the Na atom affects heterogeneous reduction through "oxidized-reduced" cycle via "combination-separation" with the O atom. Desorption of N2 molecule is the rate-determining step in the whole reaction channel. The canonical variational theory was used for kinetic analyses, considering the tunneling effect along the reaction coordinate with Wigner method. It is found that the reaction is accelerated by doping Na atom. Although the addition of Na would not significantly reduce activation energy of the rate-determining step, but would increase activation sites at the edge of char.
  • 加载中
    1. [1]

      WANG Zhi-xuan, LIU Zhi-qiang. Current situation and prospect of control on air pollutants from coal-fired power in China[J]. Eng Sci, 2015,17(9):56-62.  

    2. [2]

      CHANG S Y, ZHUO J K, MENG S, QIN S Y, YAO Q. Clean coal technologies in China:Current status and future perspectives[J]. Eng, 2016,2:447-459.  

    3. [3]

      GLARBORG P, MILLER J A, RUSCIC B, KLIPPENSTEIN S J. Modeling nitrogen chemistry in combustion[J]. Prog Energy Combust Sci, 2018,67:31-68.  

    4. [4]

      SMOOT L D, HILL S C, XU H. NOx control through reburning[J]. Prog Energy Combust Sci, 1998,24(5):385-408.  

    5. [5]

      LIU Yan-hua, ZHANG Xiao-yan, LIU Yin-he, CHE De-fu. NO reduction behavior of coal powder used for reburning[J]. J Fuel Chem Technol, 2007,35(5):523-527.  

    6. [6]

      ZHONG Bei-jing, SHI Wei-wei, FU Wei-biao. Importance of heterogeneous mechanisms of NO reduction during reburning with pulverized char[J]. J Combust Sci Technol, 2002,8(1):6-8.  

    7. [7]

      ZHANG Chao-qun, JIANG Xiu-min, HUANG Xiang-yong, LIU Jian-guo. Characteristics of adsorption of NO gas on coal char and FTIR analysis[J]. CIESC J, 2007,58(3):581-586.  

    8. [8]

      GUO F, Wu R C, BAXTER L L, HECKER W C. Models to predict kinetics of NOx reduction by chars as a function of coal rank[J]. Energy Fuels, 2019,33:5498-5504.  

    9. [9]

      WANG Yong-qiao, LU Fei, LIU Yong-sheng, LU Ping. Study on NOx reduction and its heterogeneous mechanism during biomass reburning[J]. Proc CSEE, 2010,30(26):101-106.  

    10. [10]

      ZHAO Zong-bin, LI Wen, LI Bao-qing. Effect of mineral matter on release of NO during coal char combustion[J]. CIESC J, 2003,54(1):100-106.  

    11. [11]

      ZHONG B J, TANG H. Catalytic NO reduction at high temperature by de-ashed chars with catalysts[J]. Combust Flame, 2007,149:234-243.  

    12. [12]

      WANG Z H, ZHOU J H, WEN Z C, LIU J Z, CEN K F. Effect of mineral matter on NO reduction in coal reburning process[J]. Energy Fuels, 2007,21(4):2038-2043.  

    13. [13]

      XIN Jing, YIN Shu-jian, SUN Bao-min, ZHU Heng-yi, LUO Xiao, HUANG Qiang, XIAO Hai-ping. Factorial experimental study of Analysis of the char-NO reaction intensified by doped metallic compounds[J]. J China Coal Soc, 2015,40(5):1174-1180.

    14. [14]

      ZHANG J W, SUN S Z, ZHAO Y J, HU X D, XU G W, QIN Y K. Effects of inherent metals on NO reduction by coal char[J]. Energy Fuels, 2011,25:5605-5610.  

    15. [15]

      ZHOU Hao, LIU Rui-peng, LIU Zi-hao, CHENG Ming, CEN Ke-fa. Influence of alkali metal on the evolution of NOx during coke combustion[J]. J China Coal Soc, 2015,40(5):1160-1164.  

    16. [16]

      SØRENSEN C O, JOHNSSON J E, JENSEN A. Reduction of NO over wheat straw char[J]. Energy Fuels, 2001,15:1359-1368.  

    17. [17]

      WU X Y, SONG Q, ZHAO H B, YAO Q. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy Fuels, 2015,29(11):7566-7571.  

    18. [18]

      LV Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU Yu-xin, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over chars in fluidized bed combustion[J]. Coal Convers, 2018,41(1):1-12.  

    19. [19]

      ZHOU Xing-yu, ZENG Fan-gui, XIANG Jian-hua, DENG Xiao-peng, XAING Xing-hua. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC J, 2020,71(4):1802-1811.  

    20. [20]

      ZHENG M, PAN Y, WANG Z, LI X X, GUO L. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020,268117290.  

    21. [21]

      YANG Hui-fang, GUAN Hai-lian, LI Ping, XIA Ying, WANG Feng, XU Wen-jing, BAI Hong-cun, GUO Qing-jie. Molecular modeling of oxidation mechanism and organic nitrogen conversion in coal particle combustion:A case study on HSW coal of Ningdong[J]. CIESC J, 2020,71(2):799-810.  

    22. [22]

      XV Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol, 2020,48(3):266-274.  

    23. [23]

      WANG Xin-wei, MA Qiang, HAN Chao-jie, LIN Ri-yi. Study on formation mechanism of H2S by thermochemical sulfate reduction of thiolane and magnesium sulphate[J]. J China Univ Pet, 2020,44(1):156-162.

    24. [24]

      ZHAO D, LIU H, SUN C, XU L, CAO Q. DFT study of the catalytic effect of Na on the gasification of carbon-CO2[J]. Combust Flame, 2018,197:471-86.  

    25. [25]

      CHEN Yu, ZHANG Fu-li, YAO Hui-chao, LIU Zhi-chang, CUI Jia, XU Chun-ming. Progress of theoretical simulation of catalytic water-gas-shift reaction[J]. Chem Ind Eng Prog, 2012,31(10):2221-2227.  

    26. [26]

      PERRY S T, HAMBLY E M, FLETCHER T H, SOLUM M S, PUGMIRE R J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization[J]. Proc Combust Inst, 2000,28:2313-2319.  

    27. [27]

      SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007,86:2316-2324.  

    28. [28]

      WANG Bao-jun, ZHANG Li-na, LING Li-xia, ZHANG Ri-guang. Effects of coal molecular structure on adsorption and diffusion behaviors of coalbed methane[J]. CIESC J, 2016,67(6):2548-2557.  

    29. [29]

      ZHAO Peng-fei, GUO Xin, ZHENG Chu-guang. Investigation the mechanism of elemental mercury binding on activated carbon and chlorine-embedded activated carbon[J]. Proc CSEE, 2010,30(23):40-44.  

    30. [30]

      ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char:A DFT study[J]. J Fuel Chem Technol, 2020,48(2):163-171.  

    31. [31]

      CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019,47(3):279-286.  

    32. [32]

      GAO Zheng-yang, LIU Xiao-shuo, LI Ang, MA Chuan-zhi, LI Xiang, YANG Jian-meng. The effect of SO2 on adsorption of element lead toward activated carbon in coal-fired power plants[J]. Acta Sci Circums, 2019,39(11):3732-3739.  

    33. [33]

      ZHANG X X, WU H X, XIE M, LÜ X X, ZHOU Z J, LIN R Y. Wave function and molecular reactivity study of char with different edges and the chemisorption properties of nitric oxide[J]. J Energy Inst, 2020,93(4):1519-1526.

    34. [34]

      HE K, ROBERTSON A W, FAN Y, ALLEN C H, LIN Y C, SUENAGA K, KIRKLAND A I, WARNER J H. Temperature dependence of the reconstruction of zigzag edges in graphene[J]. ACS Nano, 2015,9(5):4786-95.  

    35. [35]

      CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998,36:1061-1070.

    36. [36]

      STEPHENS P, DEVLIN F, CHABALOWSKI C, FRISCH M. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem, 1994,98:11623-11627.

    37. [37]

      LV Ze-kang, LONG Shen-wei, LI Guan-bing, NIU Sheng-li, LU Chun-mei, HAN Kui-hua, WANG Yong-zheng. Density functional theory study on chlorine corrosion of biomass furnace[J]. CIESC J, 2019,70(11):4370-4376.  

    38. [38]

      GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem, 1990,94:5523-5527.  

    39. [39]

      MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A, 2007,111:11683-11700.  

    40. [40]

      BURSCH M, CALDEWEYHER E, HANSEN A, NEUGEBAUER H, EHLERT S, GRIMME S. Understanding and quantifying london dispersion effects in organometallic complexes[J]. Acc Chem Res, 2019,52:258-266.  

    41. [41]

      GOERIGK L, HANSEN A, BAUER C, EHRLICH S, NAJIBI A, GRIMME S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions[J]. Phys Chem Chem Phys, 2017,19:32184-32215.  

    42. [42]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D.01; Gaussian, Inc., Wallingford CT, 2009.

    43. [43]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LÜ Jun-fu, WANG Jian, DONG Ai-xia. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013, 33(5): 1-12.

    44. [44]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc, 2016,41(2):490-496.  

    45. [45]

      WEI Li-hong, CUI Bao-chong, CHEN Yong, YANG Tian-hua, GUO Liang-zhen. Occurrence of sodium in high alkali coal and its transformation during combustion[J]. J Fuel Chem Technol, 2019,47(8):897-906.  

    46. [46]

      LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface:A density functional theory study[J]. J Fuel Chem Technol, 2015,43(12):1414-1419.  

    47. [47]

      LIU Ji, LU Qiang, JIANG Xiao-yan, HU Bin, DONG Chang-qing, YANG Yong-ping. Effect of alkali metal ions on the formation mechanism of HCN as NOx precursor during pyrrole pyrolysis[J]. J China Coal Soc, 2018,43(9):2633-2638.  

    48. [48]

      JIAO A Y, JIANG X M, LIU J X. Density functional theory investigation on the catalytic reduction of NO by CO on the char surface:the effect of iron[J]. Environ Sci Technol, 2020,54:2422-2428.

    49. [49]

      ZHANG X X, XIE M, WU H X, LÜ X X, Zhou Z J. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel, 2020,265116995.

    50. [50]

      MPOURNPAKIS G, FROUDAKIS G. Why alkali metals preferably bind on structural defects of carbon nanotubes:A theoretical study by first principle[J]. J Chem Phys, 2006,125204707.

    51. [51]

      FAROKH N A H, ROMAN T, HUSSAIN T, SEARLES D J. Computational study on the adsorption of sodium and calcium on edge-functionalized graphene nanoribbons[J]. J Phys Chem C, 2019,123:14895-14908.

    52. [52]

      LU T, CHEN F W. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012,33:580-592.  

    53. [53]

      DENG Jun, LI Ya-qing, ZHANG Yu-tao, YANG Chao-ping, ZHANG Jing, SHI Xue-qiang. Effects of hydroxyl on oxidation characteristics of side chain active groups in coal[J]. J China Coal Soc, 2020,45(1):232-240.  

    54. [54]

      JOHNSON E R, KEINAN S, MORI-SÁNCHEZ P, CONTRERAS-GARCÍA J, COHEN A J, YANG W T. Revealing noncovalent interactions[J]. JACS, 2010,132:6498-6506.

    55. [55]

      ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanisms of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol, 2011,17(2):155-159.  

    56. [56]

      ZHAO T, SONG W L, FAN C G, LI S G, GLARBORG P, YAO X Q. Density functional theory study of the role of a carbon-oxygen single bond group in the NO-char reaction[J]. Energy Fuels, 2018,32:7734-7744.  

    57. [57]

      MAYER I. Charge, Bond order and valence in the ab initio SCF theory[J]. Chem Phys Lett, 1983,97270.

    58. [58]

      GARRETT B C, TRUHLAR D G. Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions[J]. J Phys Chem, 1979,83(1):200-203.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(6)
  • Abstract views(949)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return