Citation: Nian Siyu, Zhang Yan, Zhang Guofeng, Qin Pan, Song Jiming. Synthesis of Co(OH)2/Ni(OH)2 Composite Electrode Materials and Their Supercapacitor Performance[J]. Chemistry, ;2019, 82(11): 989-994. shu

Synthesis of Co(OH)2/Ni(OH)2 Composite Electrode Materials and Their Supercapacitor Performance

  • Corresponding author: Song Jiming, jiming@ahu.edu.cn
  • Received Date: 15 June 2019
    Accepted Date: 6 August 2019

Figures(6)

  • Co(OH)2/Ni(OH)2 composite materials were synthesized by solvothermal method using Co(NO3)2·6H2O and Ni(NO3)2·6H2O as cobalt and nickel sources, respectively. NiCo2O4 material could be obtained by calcining as-sgnthesized composite. The obtained materials were characterized by XRD, SEM and BET. The results showed that the Co(OH)2/Ni(OH)2 composite exhibits flower-like morphology with a specific surface area of 37.48 m2·g-1. The tests of the electrochemical properties showed that the Co(OH)2/Ni(OH)2 composite materials have higher specific capacitance and capacity retention than those of NiCo2O4 material. At 0.5 A·g-1, its specific capacitance can reach 1097.8 F·g-1, while that of NiCo2O4 is only 86.1 F·g-1. Therefore, it has better electrochemical properties than the NiCo2O4 obtained by calcining, thus provides a new idea for preparing high performance supercapacitor materials.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

      E Faggioli, P Rena, V Danel et al. J. Power Sources, 1999, 84(1): 261~169. 

    4. [4]

      D R Rolison, J W Long, J C Lytle et al. Chem. Soc. Rev., 2009, 38(1): 226~252. 

    5. [5]

       

    6. [6]

       

    7. [7]

      Y Wu, F Ran. J. Power Sources, 2017, 344: 1~10. 

    8. [8]

      Q Lei, H H Song, X H Chen et al. RSC Adv., 2016, 6(47): 40683~40690. 

    9. [9]

      L L Zhang, R Zhou, X S Zhao. J. Mater. Chem., 2010, 20(29): 5983~5992. 

    10. [10]

      Y C Liu, X F Miao, J H Fang et al. ACS Appl. Mater. Interf., 2016, 8(8): 5251~5260. 

    11. [11]

      Y F Zhang, X Y Jing, Q S Wang et al. Dalton Trasac., 2017, 46(43): 15048~15058. 

    12. [12]

      Z H Huang, Y Song, X X Xu et al. ACS Appl. Mater. Interf., 2015, 7(45): 25506~25513. 

    13. [13]

      Y Zhang, H Feng, X B Wu. Int. J. Hydrogen. Energ., 2009, 34: 4889~4899. 

    14. [14]

       

    15. [15]

      J.S. Yu, S. Kang, S B Yoon. J. Am. Chem. Soc., 2002, 124(32): 82~93. 

    16. [16]

      W H Liu, K Wang, C Li et al. J. Mater. Chem. A, 2018, 6: 24979~24987. 

    17. [17]

      K Okajima, A Ikeda, K Kamoshita. Electrochim. Acta, 2005, 51(5): 972~977. 

    18. [18]

       

    19. [19]

      Y Y Wang, B H Hou, H Y Lu et al. Chemistry Select, 2016, 1(7): 1441~1446. 

    20. [20]

      Y Y Wang, Hou, Q L Ning et al. Nanotechnology, 2019, 30(21): 214002~214012. 

    21. [21]

      W Xing, S Z Qiao, R G Ding et al. Carbon, 2006, 44(2): 216~224. 

    22. [22]

      W Lee, J M Ko, J D Kim. J. Phys. Chem., 2011, 115(39): 19445~19454. 

    23. [23]

      J Jiang, J Liu, R Ding et al. ACS Appl. Mater. Interf., 2010, 3(1): 99~103. 

    24. [24]

      Z Jin, W Mu, C Zhang. Electrochim. Acta, 2012, 59: 100~104. 

    25. [25]

    26. [26]

      V Gupta, S Gupta, N Miura. J. Power Sources, 2008, 175(1): 685~689. 

    27. [27]

       

    28. [28]

       

    29. [29]

       

    30. [30]

      T Chen, L M Dai. Mater. Today, 2013, 16(7/8): 272~280. 

    31. [31]

      P Yuan, N Zhang, D Zhang et al. Chem. Commun., 2014, 50: 11188~11191. 

    32. [32]

       

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    13. [13]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    14. [14]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(7)
  • Abstract views(934)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return