Citation: WU Fa-peng, LU Hao, YAN Jie, WANG Rui-yu, ZHAO Yun-peng, WEI Xian-yong. Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 769-777. shu

Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility

  • Corresponding author: ZHAO Yun-peng, yunpengzhao2009@163.com
  • Received Date: 29 March 2018
    Revised Date: 22 June 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21206188), Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education (MKX201502), and National Undergraduate Training Programs for Innovation of China University of Mining and Technology (201610290036)the National Natural Science Foundation of China 21206188Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education MKX201502National Undergraduate Training Programs for Innovation of China University of Mining and Technology 201610290036

Figures(7)

  • Naomaohu sub-bituminous (NS) with weak reducibility and Buliangou sub-bituminous (BS) with strong reducibility were extracted in isometric carbon disulfide/acetone mixed solvent to get extracts and extraction residues (ERs). The ERs were thermal dissolved in cyclohexane and methanol to get soluble portions (SPs). The yields of the extracts from NS (ENS) and BS (EBS) are 10.6% and 8.0%, respectively, and the total yields of the SPs from NS and BS at 300℃ are 36.3% and 11.5%, respectively, indicating the solubility of the organic species in NS are better than that in BS. Arenes are the dominated compounds both in ENS and EBS. The relative contents of aliphatic hydrocarbons and phenols in the SPs of NS are obvious higher than those of BS. The molecular weight distribution of the compounds in ENS is wider than that in EBS, while the molecular weight distribution of the compounds in the SPs from NS is narrower than that from BS.
  • 加载中
    1. [1]

      LI X, ASHIDA R, MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy Fuels, 2012,26(11):6897-6904. doi: 10.1021/ef301364p

    2. [2]

      SHUI H F, XU H Y, ZHOU Y, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G, XU C B. Study on hydro-liquefaction kinetics of thermal dissolution soluble fraction from Shenfu sub-bituminous coal[J]. Fuel, 2017,200:576-582. doi: 10.1016/j.fuel.2017.03.048

    3. [3]

      JONATHAN P M, CAROLINE B C, PAUL P. Interactions of Illinois No. 6 bituminous coal with solvents:A review of solvent swelling and extraction literature[J]. Energy Fuels, 2015,29(3):1279-1294. doi: 10.1021/ef502548x

    4. [4]

      LI X, DEDY E P, RYUICHI A, KOUICHI M. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels, 2015,29:3127-3133. doi: 10.1021/ef502574b

    5. [5]

      SÖNMEZ Ö, GÖZMEN B, CEVIK T, GIRAY E S. Optimization of solvent extraction process of some turkish coals using response surface methodology and production of ash-free coal[J]. Asia-Pac J Chem Eng, 2016,11(6):1001-1011. doi: 10.1002/apj.v11.6

    6. [6]

      GRIFFITH J M, CLIFFORD C E B, RUDNICK L R, SCHOBERT H H. Solvent extraction of bituminous coals using light cycle oil:Characterization of diaromatic products in liquids[J]. Energy Fuels, 2009,23(9):4553-4561. doi: 10.1021/ef9006092

    7. [7]

      SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006,85:1798-1802. doi: 10.1016/j.fuel.2006.02.005

    8. [8]

      SÖNMEZ Ö, GIRAYE S. Producing ashless coal extracts by microwave irradiation[J]. Fuel, 2011,90(6):2125-2131. doi: 10.1016/j.fuel.2011.02.006

    9. [9]

      JANUSZ P, LUKASZ S. Effects of pressure on hydrogen transfer from tetralin to coal macerals[J]. Energy Fuels, 2005,19:348-352. doi: 10.1021/ef040053s

    10. [10]

      ZHAO Y P, XIAO J, DING M, EDDINGS E G, WEI XY, FAN X, ZONG Z M. Sequential extraction and thermal dissolution of Baiyinhua lignite in isometric CS2/acetone and toluene/methanol binary solvents[J]. Energy Fuels, 2016,30(1):47-53. doi: 10.1021/acs.energyfuels.5b01775

    11. [11]

      DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol, 2015,135:20-24. doi: 10.1016/j.fuproc.2014.09.031

    12. [12]

      LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011,25(6):2741-2745. doi: 10.1021/ef101734f

    13. [13]

      ZHAO Y P, HU H Q, JIN L J, WU B, ZHU S W. Pyrolysis behavior of weakly reductive coals from northwest China[J]. Energy Fuels, 2009,23:870-875. doi: 10.1021/ef800831y

    14. [14]

      WU B HU H Q, HUANG S P, FANG Y M, LI X, MENG M. Extraction of weakly reductive and reductive coals with sub-and supercritical water[J]. Energy Fuels, 2008,22:3944-3948. doi: 10.1021/ef8002872

    15. [15]

      CHANG H Z, WANG C G, ZENG F G, LI J, LI W Y, XIE K C. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006,34(4):389-394.  

    16. [16]

      ZOU X W, QIN T F, HUANG L H, ZHANG X L, YANG Z, WANG Y. Mechanisms and main regularities of biomass liquefaction with alcoholic solvents[J]. Energy Fuels, 2009,23(10):5213-5218. doi: 10.1021/ef900590b

    17. [17]

      TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FT-IR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent[J]. Fuel Process Technol, 2016,154:210-218. doi: 10.1016/j.fuproc.2016.08.035

    18. [18]

      CANEL M MISIRLIOGLU Z, CANEL E, BOZKURT P A. Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites[J]. Fuel, 2016,186:504-517. doi: 10.1016/j.fuel.2016.08.079

    19. [19]

      XIE X, ZHAO Y, QIU P H, LIN D, QIAN J, HOU H M, PEI J T. Investigation of the relationship between infrared structured and pyrolysis reactivity of coals with different ranks[J]. Fuel, 2018,216:521-530. doi: 10.1016/j.fuel.2017.12.049

    20. [20]

      SONG H J, LIU G R, ZHANG J Z, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol, 2017,156:454-460. doi: 10.1016/j.fuproc.2016.10.008

    21. [21]

      MICHAEL S, THOMAS A. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel, 1983,62:1321-1326. doi: 10.1016/S0016-2361(83)80017-9

    22. [22]

      VACLAVIK L, CAJKA T, HRBEK V, HAJSLOVA J. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment[J]. Anal Chim Acta, 2009,645(1/2):56-63.  

    23. [23]

      WANG Y, LI C M, HUANG L, LIU L, GUO Y L, MA L, LIU S Y. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry[J]. Anal Chim Acta, 2014,845:70-76. doi: 10.1016/j.aca.2014.06.014

    24. [24]

      CHERNETSOVA E S, BOCHKOV P O, OVCHAROV M V, ZHOKHOV S S, ABRAMOVICH R A. DART mass spectrometry:A fast screening of solid pharmaceuticals for the presence of an active ingredient, as an alternative for IR spectroscopy[J]. Drug Test Anal, 2010,2(5/6):292-294.  

    25. [25]

      CRAWFORD E, MUSSELMAN B. Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an exactive benchtop orbitrap mass spectrometer[J]. Anal Bioanal Chem, 2012,403(10):2807-2812. doi: 10.1007/s00216-012-5853-6

    26. [26]

      FAN X, WANG C F, YOU C Y, WEI X Y, CHEN L, CAO J P, ZHAO Y P, ZHAO W, WANG Y G, LU J L. Characterization of a Chinese lignite and the corresponding derivatives using direct analysis in real time quadrupole time-of-flight mass spectrometry[J]. RSC Adv, 2016,6:105780-105785. doi: 10.1039/C6RA23899H

    27. [27]

      WANG C F, FAN X, ZHANG F, WANG S Z, ZHAO Y P, ZHAO X Y, ZHAO W, ZHU T G, LU J L, WEI X Y. Characterization of humic acids extracted from a lignite and interpretation for the mass spectra[J]. RSC Adv, 2017,7:20677-20684. doi: 10.1039/C7RA01497J

  • 加载中
    1. [1]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    2. [2]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    3. [3]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    4. [4]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    5. [5]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    6. [6]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    7. [7]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    8. [8]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    9. [9]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    10. [10]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    11. [11]

      Haijiao LiuQiao FengYu HuangFeng WuYali LiuMinxia ShenXiao GuoWenting DaiWeining QiYifan ZhangLu LiQiyuan WangBianhong ZhouJianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636

    12. [12]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    16. [16]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    17. [17]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    18. [18]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    19. [19]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    20. [20]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

Metrics
  • PDF Downloads(4)
  • Abstract views(866)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return