Citation: WANG Lin-zheng, LUO Yong-hao, ZHANG Rui-zhi, DENG Rui-qu. Influence of oxygen on nitrogen distribution and transformation during straw pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1441-1448. shu

Influence of oxygen on nitrogen distribution and transformation during straw pyrolysis

  • Corresponding author: LUO Yong-hao, yhluo@sjtu.edu.cn
  • Received Date: 16 August 2017
    Revised Date: 20 October 2017

    Fund Project: The project was supported by STCSM Scientific Project(14JC1403200, 16DZ1202902)STCSM Scientific Project 14JC1403200STCSM Scientific Project 16DZ1202902

Figures(4)

  • To study influence of oxygen on distribution and transformation of fuel-N, pyrolysis experiments of straw were conducted in a two stage fixed bed reactor simulating the run conditions of grate firing. The conversion pathway of fuel-N was depicted by studying types and content of N-containing compounds in tar by GC-MS, and effect of oxygen was analyzed. Compared with inert atmosphere, tar and char yields decrease with introduction of oxygen, which leads to a decrease of N-distribution in tar and char and increase in gas fractions. Protein and amino acids are the main N-containing components in fuel, which initially go through a series of primary reactions, producing primary tar components like amides and amines. Then the primary tar goes through secondary reactions to yield secondary tar components including nitriles and N-heterocyclic compounds. In the presence of oxygen, content of primary tar components like amides and amines decrease significantly, and secondary tar components like nitriles and N-heterocyclic compounds increase.
  • 加载中
    1. [1]

      ZHU Kai-wei, LIU Zhen, HE Liang-ping, LIN Jin-chai. Eco-economic potential analysis of Chinese main crops' bio-energy utilization straw resouces[J]. Scientia Agricultra Sinica, 2016,49(19):3769-3785. doi: 10.3864/j.issn.0578-1752.2016.19.009

    2. [2]

      YIN C, ROSENDAHL L A, KÆR S K. Grate-firing of biomass for heat and power production[J]. Prog Energy Combust Sci, 2008,34(6):725-754. doi: 10.1016/j.pecs.2008.05.002

    3. [3]

      GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust Sci, 2003,29(2):89-113. doi: 10.1016/S0360-1285(02)00031-X

    4. [4]

      NIE Hu, YU Chun-jiang, BAI Ji-song, LI Lian-ming, QIN Jian-guang, FANG Meng-xiang, LUO Zhong-yang. Study on formation mechanisms of sulphide and nitrogen oxides in combustion of biomass[J]. Therm Power Gen, 2010,39(9):21-26.  

    5. [5]

      CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012,5(12):5418-5438. doi: 10.3390/en5125418

    6. [6]

      TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅴ. Pyrolysis of a sewage sludge[J]. Fuel, 2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4

    7. [7]

      HANSSON K M, SAMUELSSON J, TULLIN C, ÅMAND L E. Formation of HNCO, HCN, and NH3, from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005

    8. [8]

      TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013,47(7):3498-3505. doi: 10.1021/es304248j

    9. [9]

      CHEN W, YANG H P, CHEN Y Q, XIA M W, CHEN X, CHEN H P. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis[J]. Environ Sci Technol, 2017,51(11):6570-6579. doi: 10.1021/acs.est.7b00434

    10. [10]

      GROTKJÆR T, DAM-JOHANSEN K, JENSEN A D, GLARBORG P. An experimental study of biomass ignition[J]. Fuel, 2003,82(7):825-833. doi: 10.1016/S0016-2361(02)00369-1

    11. [11]

      MOMENI M, YIN C, KÆR S K, HVID S L. Comprehensive study of ignition and combustion of single wooden particles[J]. Energy Fuels, 2013,27(2):1061-1072. doi: 10.1021/ef302153f

    12. [12]

      WU Wen-guang, LUO Yong-hao, CHEN Yi, SU Yi, CHEN Liang, WANG Yun. Experimental study on tar destruction in a two-stage fixed-bed reactor[J]. J Fuel Chem Technol, 2012, 40(2):177-183. 

    13. [13]

      ZHAO Shan-hui, LUO Yong-hao, SU Yi, WU Wen-guang, LIU Chun-yuan. Reaction mechanism for partial oxidation of biomass tar[J]. J Chem Ind Eng (China), 2013,64(10):3790-3796.  

    14. [14]

      DEBONO O, VILLOT A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes[J]. J Anal Appl Pyrolysis, 2015,114:222-234. doi: 10.1016/j.jaap.2015.06.002

    15. [15]

      ZHAN H, YIN X L, HUANG Y Q, YUAN H Y, WU C Z. NOx precursors evolving during rapid pyrolysis of lignocellulosic industrial biomass wastes[J]. Fuel, 2017,207:438-448. doi: 10.1016/j.fuel.2017.06.046

    16. [16]

      BECIDAN M. Experimental studies on municipal solid waste and biomass pyrolysis[D]. Trondheim:Norwegian University of Science and Technology, 2007. 

    17. [17]

      RATCLIFF JR M A, MEDLEY E E, SIMMONDS P G. Pyrolysis of amino acids. Mechanistic considerations[J]. J Org Chem, 1974,39(11):1481-1490. doi: 10.1021/jo00924a007

    18. [18]

      LI J, WANG Z Y, YANG X, HU L, LIU Y W, WANG C X. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG FT-IR[J]. J Anal Appl Pyrolysis, 2007,80(1):247-253. doi: 10.1016/j.jaap.2007.03.001

    19. [19]

      SAMUELSSON J I. Conversion of nitrogen in a fixed burning biofuel bed[D]. Go teborg:Chalmers University of Technology, 2006. 

    20. [20]

      VOORHEES K J, ZHANG W, HENDRICKER A D, MURUGAVERL B. An investigation of the pyrolysis of oligopeptides by Curie-point pyrolysis-tandem mass spectrometry[J]. J Anal Appl Pyrolysis, 1994,30(1):1-16. doi: 10.1016/0165-2370(94)00795-0

    21. [21]

      CHOI S S, KO J E. Analysis of cyclic pyrolysis products formed from amino acid monomer[J]. J Chromatogr A, 2011,1218(46):8443-8455. doi: 10.1016/j.chroma.2011.09.055

    22. [22]

      SIMMONDS P G, MEDLEY E E, RATCLIFF M A, SHULMAN G P. Thermal decomposition of aliphatic monoaminomonocarboxylic acids[J]. Anal Chem, 1972,44(12):2060-2066. doi: 10.1021/ac60320a040

    23. [23]

      SHARMA R K, CHAN W G, SEEMAN J I, HAJALIGOL M R. Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids[J]. J Anal Appl Pyrolysis, 2003,66(1):97-121.  

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    14. [14]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    15. [15]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(0)
  • Abstract views(492)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return