Citation: MENG Yu, LIU Xiao-yan, CHEN Juan, MA Ya-jun, ZHAO Shu. First-principle study on the reaction mechanism of water-gas shift on the Fe3O4 (001)-B surface[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 601-609. shu

First-principle study on the reaction mechanism of water-gas shift on the Fe3O4 (001)-B surface

  • Corresponding author: MENG Yu, mengyu@yulinu.edu.cn
  • Received Date: 20 February 2020
    Revised Date: 17 April 2020

    Fund Project: Scientific Research Program Funded by Shaanxi Provincial Education Department 19JS071Scientific Research Program Funded by Yulin Government 2019-83-1The project was supported by Natural Science Foundation Research Program of Shaanxi Province (2019JQ-905, 2018JZ2004), Scientific Research Program Funded by Shaanxi Provincial Education Department (19JS071), Scientific Research Program Funded by Yulin Government (2019-83-1), PhD Research Startup Foundation of Yulin University (17GK12, 17GK13) and the Foundation of State Key Laboratory of Coal Conversion (J20-21-908)PhD Research Startup Foundation of Yulin University 17GK13the Foundation of State Key Laboratory of Coal Conversion J20-21-908Natural Science Foundation Research Program of Shaanxi Province 2018JZ2004Natural Science Foundation Research Program of Shaanxi Province 2019JQ-905PhD Research Startup Foundation of Yulin University 17GK12

Figures(9)

  • The reaction mechanism of water-gas shift (WGS) on the Fe3O4 (001)-B surface was systematically studied by using the density functional theory (DFT) calculation with spin polarization. The results show that for the WGS on the Fe3O4 (001)-B surface, three reaction routes including redox, association and regeneration ones coexist, though the redox and association routes may be more important with much lower effective energy barriers. The elementary reaction of H2 formation is influenced by the concentrations of surface H and O defects; higher concentrations of H species and O defects on the catalyst surface are beneficial to the formation of H2. These results should be helpful for a better understanding of the WGS reaction mechanism on the iron-oxygen catalyst.
  • 加载中
    1. [1]

      RHODES , C , HUTCHINGS G J, WARD A M. Water-gas shift reaction:Finding the mechanistic boundary[J]. Catal Today, 1995,23:43-58. doi: 10.1016/0920-5861(94)00135-O

    2. [2]

      NEWSOME D S. The water-gas shift reaction[J]. Catal Rev, 1980,21:275-318. doi: 10.1080/03602458008067535

    3. [3]

      O'BRIEN R J, XU L, SPICER R L, BAO S, MILBURN D R, DAVIS B H. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts[J]. Catal Today, 1997,36:325-334. doi: 10.1016/S0920-5861(96)00246-5

    4. [4]

      ANDREEV A, IDAKIEV V, MIHAJLOVA D, SHOPOV D. Iron-based catalysts for the water-gas shift reaction promoted by first-row transition metal oxides[J]. Appl Catal, 1986,22:385-387. doi: 10.1016/S0166-9834(00)82645-7

    5. [5]

      RHODES C, WILLIAMS B P, KING F. Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst[J]. Catal Commun, 2002,3:381-384. doi: 10.1016/S1566-7367(02)00156-5

    6. [6]

      KUNDU M L, SENGUPTA A C, MAITI G C. Characterization of chromia-promoted γ-iron oxide catalysts and their CO conversion efficiency[J]. J Catal, 1988,112:375-383. doi: 10.1016/0021-9517(88)90151-0

    7. [7]

      PATLOLLA A, CARINO E V, EHRLICH S N. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts[J]. Acs Catal, 2012,2:2216-2223. doi: 10.1021/cs300414c

    8. [8]

      PATLOLLA A, CARINO E V, EHRLICH S N, STAVITSKI E, FRENKEL A I. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts[J]. ACS Catal, 2012,2:2216-2223. doi: 10.1021/cs300414c

    9. [9]

      REDDY G K, BOOLCHAND P, SMIRNIOTIS P G. Unexpected behavior of copper in modified ferrites during high temperature WGS reaction aspects of Fe3+ Fe2+ redox chemistry from Mössbauer and XPS studies[J]. J Phys Chem C, 2012,116:11019-11031. doi: 10.1021/jp301090d

    10. [10]

      CHERKEZOVA-ZHELEVA Z, MITOV I. In situ Mössbauer investigation of iron oxide catalyst in water gas shift reaction-impact of oxyreduction potential and temperature[J]. J Phys Conf Ser, 2010,217012044. doi: 10.1088/1742-6596/217/1/012044

    11. [11]

      GRILLO M E, FINNIS M W, RANKE W. Surface structure and water adsorption on Fe3O4 (111):Spin-density functional theory and on-site Coulomb interactions[J]. Phys Rev B, 2008,77075407. doi: 10.1103/PhysRevB.77.075407

    12. [12]

      HUANG D M, CAO D B, LI Y W, JIAO H J. Density function theory study of CO adsorption on Fe3O4 (111) surface[J]. J Phys Chem B, 2006,110:13920-13925. doi: 10.1021/jp0568273

    13. [13]

      CHEN L, NI G, HAN B, ZHOU C G, WU J P. Mechanism of water gas shift reaction on Fe3O4 (111) Surface[J]. Acta Chim Sin, 2011,69:393-398.  

    14. [14]

      HUANG L, HAN B, ZHANG Q F, FAN M H, CHENG H S. Mechanistic study on water gas shift reaction on the Fe3O4 (111) reconstructed surface[J]. J Phys Chem C, 2015,119:28934-28945. doi: 10.1021/acs.jpcc.5b09192

    15. [15]

      RIM K T, EOM D, CHAN S W. Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4:Implications for catalysis[J]. J Am Chem Soc, 2012,134:18979-18985. doi: 10.1021/ja305294x

    16. [16]

      WANG G C, JIANG L, CAI Z S, PAN Y, ZHAO X, HUANG W, XIE K, LI Y, SUN Y, ZHONG B. Surface structure sensitivity of the water-gas shift reaction on Cu(hkl) surfaces:A theoretical study[J]. J Phys Chem B, 2003,107(2):557-562. doi: 10.1021/jp0215567

    17. [17]

      WANG G C, NAKAMURA J. Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces:A DFT study[J]. J Phys Chem Lett, 2010,1(20):3053-3057. doi: 10.1021/jz101150w

    18. [18]

      WA NG, Y X, WANG G C. A systematic theoretical study of water gas shift reaction on Cu(111) and Cu(110):Potassium effect[J]. ACS Catal, 2019,9:2261-2274. doi: 10.1021/acscatal.8b04427

    19. [19]

      PARKINSON G S, MANZ T A, NOVOTNY Z, SPRUNGER P T, DIEBOLD U. Antiphase domain boundaries at the Fe3O4 (001) surface[J]. Phy Rev B, 2012,85(19):195451-195457. doi: 10.1103/PhysRevB.85.195451

    20. [20]

      PENTCHEVA R, MORITZ W, RUNDGREN J, FRANK S, SCHRUPP D, SCHEFFLER M. A combined DFT/Leed-approach for complex oxide surface structure determination:Fe3O4(001)[J]. Surf Sci, 2008,602(7):1299-1305. doi: 10.1016/j.susc.2008.01.006

    21. [21]

      NOVOTNY Z, MULAKALURI N, EDES Z, SCHMID M, PENTCHEVA R, DIEBOLD U. Probing the surface phase diagram of Fe3O4(001) towards the fe-rich limit:Evidence for progressive reduction of the surface[J]. Phys Rev B, 2013,87(19):2329-2337.  

    22. [22]

      KRESSE G, FURTHMÜLLER J. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996,6:15-50. doi: 10.1016/0927-0256(96)00008-0

    23. [23]

      KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    24. [24]

      BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994,50:17953-17979. doi: 10.1103/PhysRevB.50.17953

    25. [25]

      KRESSE G, HAFNER J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110)[J]. Surf Sci, 2000,459:287-302. doi: 10.1016/S0039-6028(00)00457-X

    26. [26]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997,781396.  

    28. [28]

      METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zone integration in metals[J]. Phys Rev B, 1989,403616. doi: 10.1103/PhysRevB.40.3616

    29. [29]

      JÓNSSON H, MILLS G, JACOBSEN K W. In Classical and Quantum Dynamics in Condensed Phase Simulations[M]. Singapore:World Scientific, 1998:385.

    30. [30]

      HENKELMANN G, UBERUAGA B P, JNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000,113:9901-9904. doi: 10.1063/1.1329672

    31. [31]

      REDDY G K, SMIRNIOTIS P G. Effect of copper as a dopant on the water gas shift activity of Fe/Ce and Fe/Cr modified ferrites[J]. Catal Lett, 2011,141:27-32. doi: 10.1007/s10562-010-0465-2

    32. [32]

      HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Comput Mater Sci, 2006,36(3):0-360.  

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    9. [9]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    10. [10]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    13. [13]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(16)
  • Abstract views(1061)
  • HTML views(255)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return