Citation: MENG Peng-tong, FAN Chao, LÜ Wen-ting, WU Zhi-wei, JIAO Wei-yong, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Preparation of monolithic cordierite supported Cu-SSZ-13 catalyst and its performance in the selective catalytic reduction of NOx with NH3[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1216-1223. shu

Preparation of monolithic cordierite supported Cu-SSZ-13 catalyst and its performance in the selective catalytic reduction of NOx with NH3

  • Corresponding author: LI Jun-fen, lijunfen@sxicc.ac.cn QIN Zhang-feng, qzhf@sxicc.ac.cn
  • Received Date: 9 July 2020
    Revised Date: 8 August 2020

    Fund Project: The Strategic Program of Coal-based Technology of Shanxi Province of China MQ2014-10The project was supported by the Strategic Program of Coal-based Technology of Shanxi Province of China ( MQ2014-11, MQ2014-10) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020500).The Strategic Program of Coal-based Technology of Shanxi Province of China MQ2014-11The Strategic Priority Research Program of the Chinese Academy of Sciences XDA21020500

Figures(6)

  • A series of monolithic cordierite supported Cu-SSZ-13 catalysts (Cu-SSZ-13/Cordierite) was prepared by coating the Cu-SSZ-13 molecular sieves on the cellular cordierite through ultrasonic dispersion with polyvinyl alcohol (PVA) or pseudo boehmite powder (SB) as assisting agent and used in the selective catalytic reduction of NOx with NH3 (NH3-SCR). With the help of XRD, nitrogen sorption, SEM and H2-TPR characterization techniques, the influence of coating assistant agent on the firmness of the Cu-SSZ-13 layer, catalytic activity in the NH3-SCR of NO, hydrothermal stability and resistance against SO2 poisoning was then investigated. The results indicate that by using PVA as the coating assistant agent, a firm layer of Cu-SSZ-13 can be formed on the surface of monolithic Cu-SSZ-13/Cordierite catalyst. Moreover, the Cu-SSZ-13(PVA)/Cordierite exhibits high catalytic activity in the NH3-SCR of NOx (close to that of the pristine Cu-SSZ-13 molecular sieve), high hydrothermal stability and good tolerance to SO2, displaying great potential as a practicable catalyst for the removal of NOx from exhausts of both the mobile and the stationary sources.
  • 加载中
    1. [1]

      BOSCH H, JANSSEN F. Formation and control of nitrogen oxides[J]. Catal Today, 1988,2(4):369-379.  

    2. [2]

      HERNÁNDEZ-GIMÉNEZ A M, LOZANO-CASTELLÓ D, BUENO-LÓPEZ A. Effect of CO2, H2O and SO2 in the ceria-catalyzed combustion of soot under simulated diesel exhaust conditions[J]. Appl Catal B:Environ, 2014,148-149:406-414.  

    3. [3]

      LIU Xiao-wen, LI Jun, LI Jia-xing, NI Zhong-xiao, YI Xiu-le, LU Xin. Overview of flue gas denitrification technology[J]. Guangzhou Chem Ind (China), 2019,47(24):53-55.  

    4. [4]

      QI G, YANG R, RINALDI F. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts[J]. J Catal, 2006,237(2):381-392.  

    5. [5]

      LI J, CHANG H, MA L, HAO J, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Cataly Today, 2011,175(1):147-156.  

    6. [6]

      BRANDENBERGER S, KRÖCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev-Sci Eng, 2008,50(4):492-531.  

    7. [7]

      BONINGARI T, KOIRALA R, SMIRNIOTIS P G. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis:Structural and catalytic properties[J]. Appl Catal B:Environ, 2012,127:255-264.  

    8. [8]

      CHEN Z, YANG Q, LI H, LI X, WANG L, CHI TSANG S. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. J Catal, 2010,276(1):56-65.  

    9. [9]

      SCHNEIDER H, MACIEJEWSKI M, KOHLER K, WOKAUN A, BAIKER A. Chromia supported on titania:ⅣProperties of different chromium oxide phases in the catalytic reduction of no by NH3 studied by in situ diffuse reflectance FTIR spectroscopy[J]. J Catal, 1995,157:312-320.  

    10. [10]

      SMIRNIOTIS P G, PENÃ D A, UPHADE B S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on hombikat TiO2[J]. Angew Chem Int Ed, 2001,40(13):2479-2482.  

    11. [11]

      XIN Y, LI Q, ZHANG Z. Zeolitic materials for DeNOx selective catalytic reduction[J]. ChemCatChem, 2018,10(1):29-41.  

    12. [12]

      CHEN L, LI J, GE M. DRIFT study on cerium-tungsten titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol, 2010,44(24):9590-9596.  

    13. [13]

      LIU F, ASAKURA K, HE H, SHAN W, SHI X, ZHANG C. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2011,103(3/4):369-377.  

    14. [14]

      ZHU Q, KONDO J N, OHNUMA R, KUBOTA Y, YAMAGUCHI M, TATSUMI T. The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites[J]. Microporous Mesoporous Mater, 2008,112(1/3):153-161.  

    15. [15]

      BLEKEN F, BJØRGEN M, PALUMBO L, BORDIGA S, SVELLE S, LILLERUD K-P, OLSBYE U. The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology[J]. Top Catal, 2009,52(3):218-228.  

    16. [16]

      FICKEL D W, LOBO R F. Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD[J]. J Phys Chem C, 2010,114(3):1633-1640.  

    17. [17]

      DEKA U, JUHIN A, EILERTSEN E A, EMERICH H, GREEN M A, KORHONEN S T, WECKHUYSEN B M, BEALE A M. Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction[J]. J Phys Chem C, 2012,116(7):4809-4818.  

    18. [18]

      FICKEL D W, D'ADDIO E, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B:Environ, 2011,102(3/4):441-448.  

    19. [19]

      BOGER T, HEIBEL A K, SORENSEN C M. Monolithic catalysts for the chemical industry[J]. Ind Eng Chem Res, 2004,43(16):4602-4611.  

    20. [20]

      LIU Q, LIU Z, WU W. Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst[J]. Catal Today, 2009,147S:S285-S289.  

    21. [21]

      ZONES S I. Zeolite SSZ-13 and its method of preparation: US, 4544538[P]. 1985.

    22. [22]

      FAN Chao, LUO Li, WU Zhi-wei, ZHU Hua-qing, QIN Zhang-feng. Preparation of monolithic Pd/ZSM-5/Cordierite catalyst for the combustion of lean methane[J]. J Shaanxi Normal Univ (Nat Sci Ed), 2019,47(1):94-100.  

    23. [23]

      HE D, WANG Z, DENG D, DENG S, HE H, LIU L. Synthesis of Cu-SSZ-13 catalyst by using different silica sources for NO-SCR by NH3[J]. Mol Catal, 2020,484110738.  

    24. [24]

      WANG Y, XIE L, LIU F, RUAN W. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3[J]. J Environ Sci, 2019,81:195-204. doi: 10.1016/j.jes.2019.01.013

    25. [25]

      RICHTER M, FAIT M, ECKELT R, SCHNEIDER M, RADNIK J, HEIDEMANN D, FRICKE R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal, 2007,245(1):11-24.  

    26. [26]

      GAO F, WALTER E D, KARP E M, LUO J, TONKYN R G, KWAK J H, SZANYI J, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal, 2013,300:20-29. doi: 10.1016/j.jcat.2012.12.020

    27. [27]

      KEFIROV R, PENKOVA A, HADJIIVANOV K, DZWIGAJ S, CHE M. Stabilization of Cu+ ions in BEA zeolite:Study by FTIR spectroscopy of adsorbed CO and TPR[J]. Microporous Mesoporous Mater, 2008,116(1/3):180-187.  

    28. [28]

      LIU Shi-cheng, QIN Rui-xiang, XIAO Rui, ZHANG Chun-xue, WANG Dan, LIU Tong, WANG Jin-bo. NH3-SCR reaction of nitrogen oxides catalyzed by Cu-based ZSM-5 zeolite[J]. J Chongqing Univ Sci Technol(Nat Sci Ed), 2019,21(5):108-111.  

    29. [29]

      DOU B, LV G, WANG C, HAO Q, HUI K. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549-556. doi: 10.1016/j.cej.2015.02.004

    30. [30]

      SULTANA A, SASAKI M, SUZUKI K, HAMADA H. Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR[J]. Catal Commun, 2013,41:21-25. doi: 10.1016/j.catcom.2013.06.028

    31. [31]

      SJÖVALL H, OLSSON L, FRIDELL E, BLINT R J. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5-The effect of changing the gas composition[J]. Appl Catal B:Environ, 2006,64:180-188.  

    32. [32]

      WANG C, WANG C, WANG J, WANG J, SHEN M, LI W. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction[J]. J Environ Sci, 2018,70:20-28.

    33. [33]

      XIE K, LEISTNER K, WIJAYANTI K, KUMAR A, KAMASAMUDRAM K, OLSSON L. Influence of phosphorus on Cu-SSZ-13 for selective catalytic reduction of NOx by ammonia[J]. Catal Today, 2017,297:46-52.  

    34. [34]

      HAMMERSHØI P S, JANGJOU Y, EPLING W S, JENSEN A D, JANSSENS T V W. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3[J]. Appl Catal B:Environ, 2018,226:38-45.  

    35. [35]

      HAMMERSHØI P S, VENNESTRØM P N R, FALSIG H, JENSEN A D, JANSSENS T V W. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction[J]. Appl Catal B:Environ, 2018,236:377-383.  

    36. [36]

      JANGJOU Y, DO Q, GU Y, LIM L-G, SUN H, WANG D, KUMAR A, LI J, GRABOW L C, EPLING W S. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catal, 2018,8(2):1325-1337.  

    37. [37]

      ZHANG L, WANG D, LIU Y, KAMASAMUDRAM K, LI J, EPLING W. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Appl Catal B:Environ, 2014,156-157:371-377.  

    38. [38]

      JANGJOU Y, WANG D, KUMAR A, LI J, EPLING W S. SO2 poisoning of the NH3-SCR reaction over Cu-SAPO-34:Impact of ammonium sulfate versus other S-containing species[J]. ACS Catal, 2016,6(10):6612-6622.  

    39. [39]

      FERRIZZ R M, GORTE R J, VOHS J M. TPD and XPS investigation of the interaction of SO2 with model ceria catalysts[J]. Catal Lett, 2002,82:123-129. doi: 10.1023/A:1020512713021

    40. [40]

      KONG L, ZOU S, MEI J, GENG Y, ZHAO H, YANG S. Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg(0) from nonferrous metal smelting flue gas:Performance and reaction mechanism[J]. Environ Sci Technol, 2018,52(17):10003-10010.  

    41. [41]

      THEGE I K. DSC investigation of the thermal behaviour of (NH4)2SO4, NH4HSO4 and NH4NH2SO3[J]. Thermochim Acta, 1983,60(2):149-159.  

  • 加载中
    1. [1]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    10. [10]

      Jianning ZhangYihuai ZhangGuoxin MaJingchen ZhaoTao ZhangJian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    14. [14]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    20. [20]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

Metrics
  • PDF Downloads(6)
  • Abstract views(1504)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return