Citation: MENG Zhuo-yue, YANG Zhi-yuan, JU Xiao-qian, SONG Xiao-yu, LONG Jiang. Study on effect of dispersant on semi-coke water slurry property based on quantum chemistry calculation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1025-1031. shu

Study on effect of dispersant on semi-coke water slurry property based on quantum chemistry calculation

  • Corresponding author: YANG Zhi-yuan, zhiyuanyang@126.com
  • Received Date: 23 May 2019
    Revised Date: 12 July 2019

    Fund Project: the Key Industry Chain Innovation Project, Shaanxi province, China 2018GY-076Major Research and Development Project from the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, China SMDZ-2019ZD-2the Key Industry Chain Innovation Project, Shaanxi province, China 2017ZDCXL-GY-10-01-02the National Natural Science Foundation of China 41772166Xi′an Science and Technology Project 201805036YD14CG20(6)The project was supported by the National Natural Science Foundation of China (41772166), the Key Industry Chain Innovation Project, Shaanxi province, China (2017ZDCXL-GY-10-01-02, 2018GY-076), Xi′an Science and Technology Project (201805036YD14CG20(6)) and Major Research and Development Project from the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, China (SMDZ-2019ZD-2)

Figures(7)

  • In order to utilize semi-coke resources efficiently and select the suitable dispersant to improve the performance of slurry prepared by semi-coke, the effects of different dispersants (sodium humate, sodium lignosulfonate, sodium dodecyl sulfonate and a self-made itaconic acid dispersant IPMS) on the pulping property of semi-coke slurry were studied. The structure parameters of dispersant and the interaction energy between semi-coke and dispersants were calculated by the software-Material Studio (MS) and compared with experimental value. The results show that the addition of dispersants can effectively reduce the surface tension of liquid and increase the electronegativity of semi-coke particles, enhancing the electrostatic repulsion between particles and making the slurry more stable. The self-made itaconic acid dispersant IPMS has a better effect on the property of semi-coke water slurry under the same preparation conditions. The apparent viscosity is 625 mP·s when the shear rate is 100 s-1, the water-liberating rate in 7 d of slurry is only 2.38% and there is no hard precipitation. The adsorption simulation indicates that the oxygen atom of the dispersant approaches to the hydroxyl side of the semi-coke and makes charge transfer, and the order of activity of four dispersants is IMPS > SH > SLS > SDS. The interaction between IMPS and the semi-coke leads to a strong adsorption, which is consistent with the experimental results. It is proven that the performance of dispersants can be evaluated by quantum chemical calculation combined with experimental data, providing a theoretical basis for the preparation technology of slurry fuel as well as the design and development of new reagents.
  • 加载中
    1. [1]

      LIU S Q, ZHANG Y J, TUO K Y, WANG L P, CHEN G. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Process Technol, 2018,178:139-147. doi: 10.1016/j.fuproc.2018.05.028

    2. [2]

      LI Q, LI X H, JIANG J K, DUAN L, GE S, ZHANG Q, DENG J G, WANG S X, HAO J M. Semi-coke briquettes:towards reducing emissions of primary PM 2.5, particulate carbon, and carbon monoxide from household coal combustion in China[J]. Sci Rep-UK, 2016,619306. doi: 10.1038/srep19306

    3. [3]

      LI Hui, LI Gang, LIN Tao-hai, HU Tian-bao. Slurryability study on mixed preparation of coal-coke water slurry from coke powder and low rank coal[J]. Coal Chem Ind, 2018,46(5):16-19.  

    4. [4]

      WANG Si-tong, YANG Zhi-yuan, ZHAO Min-jie, LI Zhi-hua. Preparation and mechanism of Shenfu semi-coke modification for the water semi-coke slurry[J]. J Xian Uni Sci Technol, 2016,36(5):680-684.  

    5. [5]

      LV Xiang-yang. Selection and application of additive for high concentration low rank coal water slurry[J]. Clean Coal Technol, 2018,24(4):54-59.  

    6. [6]

      YANG Dong-jie, GUO Wen-yuan, LI Xu-zhao, WANG Yue, QIU Xue-qing. Effects of molecular weight of grafted sulfonated lignin on its dispersion and adsorption properties as a dispersant for coal water slurries[J]. J Fuel Chem Technol, 2013,41(1):20-25. doi: 10.3969/j.issn.0253-2409.2013.01.004

    7. [7]

      SAHOO H, DAS B, RATHE S S. Density functional calculations of amines on the (101) face of quartz[J]. Miner Eng, 2014,69:57-64. doi: 10.1016/j.mineng.2014.07.007

    8. [8]

      LU Ting-liang. Quantum chemistry calculations and experimental research of the performance of hydrocarbon flotation reagents[D]. Taiyuan: Taiyuan University of Technology, 2015. 

    9. [9]

      CHEN J, MIN F F, LIU L Y, LIU C F, LU F Q. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite[J]. Appl Surf Sci, 2017,419:241-251. doi: 10.1016/j.apsusc.2017.04.213

    10. [10]

      YANG Z Y, MENG Z Y, LI Z H, WANG S T. Synthesis and application of itaconic acid water-coke slurry dispersant[J]. Mater Sci Forum, 2017,896:167-174. doi: 10.4028/www.scientific.net/MSF.896.167

    11. [11]

      WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. J Fuel Chem Technol, 2019,47(3):271-278.  

    12. [12]

      LI Ke-da, XIE Yan, CAO Yang, GUO Yu, CHEN Qian-lin, AO Xian-quan. Preparation of biomass coal water slurry through blending distillers' grains with anthracite[J]. J Fuel Chem Technol, 2016,44(4):408-414. doi: 10.3969/j.issn.0253-2409.2016.04.004

    13. [13]

      YU Xiao-hui. Analysis of Shengli lignite pyrolysis products and construction of typical char's molecular structure model[D]. Xuzhou: China University of Mining and Technology, 2016. 

    14. [14]

      GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006,27(15):1787-1799. doi: 10.1002/jcc.20495

    15. [15]

      DAS D, DASH U, MEHER J, MISRA P K. Improving stability of concentrated coal-water slurry using mixture of a natural and synthetic surfactants[J]. Fuel Process Technol, 2013,113:41-51. doi: 10.1016/j.fuproc.2013.02.021

    16. [16]

      ZHANG K, JIN L E, CAO Q. Evaluation of modified used engine oil acting as a dispersant for concentrated coal-water slurry[J]. Fuel, 2016,175:202-209. doi: 10.1016/j.fuel.2016.02.026

    17. [17]

      LI He-ping, ZHANG Xiao-guang, WU Jia-rui, WANG Xue-mei, HU Qi-lin, LIU Wan-yi. Characteristic parameters test and selection of coal water slurry additives[J]. Coal Convers, 2017,40(4):48-56. doi: 10.3969/j.issn.1004-4248.2017.04.008

    18. [18]

      WANG C Y, ZHAO H, DAI Z H, LI W F, LIU H F. Influence of alkaline additive on viscosity of coal water slurry[J]. Fuel, 2019,235:639-646. doi: 10.1016/j.fuel.2018.08.060

    19. [19]

      WANG J Q, LIU J F, WANG S N, CHENG J. Slurrying property and mechanism of coal-coal gasification wastewater-slurry[J]. Energy Fuels, 2018,32(4):4833-4840. doi: 10.1021/acs.energyfuels.8b00107

    20. [20]

      ZHANG Jian-feng, HU Yue-hua, XU Jing, WANG Dian-zuo. Quantum chemical calculation on properties of phenoxy acetic acids depressants[J]. Chin J Nonferrous Met, 2004,14(8):1437-1441. doi: 10.3321/j.issn:1004-0609.2004.08.032

    21. [21]

      ZHOU Ling-chu, ZHANG Yi-min. A quantum chemistry analysis of the interaction mechanism of andalusite and several common collectors[J]. J Wuhan Univ Sci Technol, 2010,33(6):632-635. doi: 10.3969/j.issn.1674-3644.2010.06.016

    22. [22]

      CHEN Jun. Characteristics and mechanism research on hydrophobic aggregation of fine particles in high muddied coal slurry water[D]. Huainan: Anhui University of Science and technology, 2017. 

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    3. [3]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    4. [4]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    5. [5]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    6. [6]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    7. [7]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    12. [12]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    13. [13]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    18. [18]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(14)
  • Abstract views(732)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return