Citation: FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 907-914. shu

Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal

  • Corresponding author: ZHANG De-xiang, zdx@ecust.edu.cn
  • Received Date: 23 April 2019
    Revised Date: 17 June 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China(2016YFB0600303)the National Key Research and Development Program of China 2016YFB0600303

Figures(8)

  • To explore effect of solvent characteristics on reaction behavior of coal hydroliquefaction intermediate products, coal from Naomaohu in Xinjiang as raw material, tetralin, recycle solvent and decalin as hydrogen-donor solvents, hydroliquefaction experiments were performed in a high-pressure stirred reactor, and change of free radical concentration of asphaltene was analyzed by EPR. The results indicate that asphaltene in tetralin is formed in large quantities and transformed at the same time with increasing reaction temperature, the yield is from 12.92% at 290 ℃ to a maximum of 34.13% at 350 ℃ and then to 15.98% at 430 ℃. The asphaltene yield in recycle solvent continues to rise first, with 31.89% at 290 ℃ and a maximum of 47.96% at 400 ℃, and then decreases to 33.90% due to coking reaction. The change of asphaltene yield in decalin is consistent with that in tetralin. The change of free radical concentration of asphaltene is the same in three solvents, reaching the maximum at 350 ℃, which is 1.778×1018, 2.323×1018 and 1.930×1018/g respectively. On the whole, the values of free radical concentration of asphaltene in recycle solvent are higher than those in tetralin, and that in decalin is between the two solvents. But the g value in tetralin and recycle solvent is between 2.00323 and 2.00403, and the change is consistent with that of COx content in gas products.
  • 加载中
    1. [1]

      GUO Wei. Study on the geological characteristics and the comparison of coal seams in the coal field of Naomohu in xinjiang[J]. Geol Sur, 2016(24)90. doi: 10.3969/j.issn.2095-0446.2016.24.069

    2. [2]

      ZHAO Zheng-wei, LI Cong-cong, BAO Zhi-hong, WEI Yun-xun. Coal quality features and clean utilization irientation of coal No.1 in nom nur mine area, Xinjiang[J]. Coal Geol China, 2018,30(9):1-4. doi: 10.3969/j.issn.1674-1803.2018.09.01

    3. [3]

      GAO Jin-sheng, ZHANG De-xiang. Coal Liquefaction Technology[M]. Beijing:Chemical Industry Press, 2005:130-162.

    4. [4]

      ZHOU Yang, ZHANG Yuan-yuan, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Chemical structure and hydrogenation liquefaction performance of two kinds of western coal[J]. Coal Convers, 2017,40(6):1-6. doi: 10.3969/j.issn.1004-4248.2017.06.001

    5. [5]

      SIMSEK E H, GULEC F, KAVUSTU H. Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models[J]. Fuel, 2017,207:814-820. doi: 10.1016/j.fuel.2017.06.004

    6. [6]

      ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. J Fuel Chem Technol, 2018,46(12):1423-1429. doi: 10.3969/j.issn.0253-2409.2018.12.002 

    7. [7]

      LUO Hua-feng, LING Kai-cheng, ZHANG Wei-shuai, WANG Shun-hua, FENG Wei, SHEN Jun. Reaction mechanism of hydrogen for direct coal liquefaction without catalysts[J]. Coal Convers, 2011,34(4):20-24. doi: 10.3969/j.issn.1004-4248.2011.04.006

    8. [8]

      NIU B, JIN L J, LI Y, SHI Z W, HU H Q. Isotope analysis for understanding the hydrogen transfer mechanism in direct liquefaction of Bulianta coal[J]. Fuel, 2017,203:82-89. doi: 10.1016/j.fuel.2017.04.079

    9. [9]

      LI Gang, LING Kai-cheng. Influencing factors on quick coal liquefaction at high temperature[J]. J Fuel Chem Technol, 2009,37(6):648-653. doi: 10.3969/j.issn.0253-2409.2009.06.002 

    10. [10]

      NING Yi-fei, ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Effect of reaction time on free radical concentration in hydrogenation liquefaction of Naomaohu coal[J]. J Fuel Chem Technol, 2018,46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001 

    11. [11]

      CHEN Chong, XU Xue-min, GAO Jin-sheng. Nature of preasphaltene and asphaltene in coal[J]. J East Chin Univ Sci Technol, 1998(1):31-34.  

    12. [12]

      MALHOTRA V M, BUCKMASTER H A. 9 and 34 GHz EPR study of the free radicals in various asphaltenes:statistical correlation of the g-values with heteroatom content[J]. Org Geochem, 1985,8(4):235-239. doi: 10.1016/0146-6380(85)90001-4

    13. [13]

      MICHAEL G, AL-SIRI M, KHAN Z H, ALI F A. Differences in average chemical structures of asphaltene fractions separated from feed and product oils of a mild thermal processing reaction[J]. Energy Fuels, 2005,19(4):1598-1605. doi: 10.1021/ef049854l

    14. [14]

      WANG Zhi-cai, CHEN En-sheng, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Spectral characterization of asphaltene from direct liquefaction of Shengli lignite[J]. J Fuel Chem Technol, 2014,42(6):656-661.  

    15. [15]

      XUE Yong-bing, LING Kai-cheng. Effect of solvent on direct coal liquefaction[J]. J Fuel Chem Technol, 2012,40(11):1295-1299. doi: 10.3969/j.issn.0253-2409.2012.11.003 

    16. [16]

      LIU Mu-xin. The solvent action in liquefaction of coal and pyrolysis free radical behavior of coal[D]. Beijing: University of Chinese Academy of Sciences, 2015.

    17. [17]

      LIAN Peng-fei. Study on characteristics of some potential coal liquefaction solvents and their effect on coal liquefaction[D]. Beijing: University of Chinese Academy of Sciences, 2017.

    18. [18]

      SAKATA R, TAKAYAMA A, SAKANISHI K, MOCHIDA I. Roles of nondonor solvent in the hydrogen-transferring liquefaction of Australian brown coal[J]. Energy Fuels, 1990,4(5):585-588. doi: 10.1021/ef00023a030

    19. [19]

      RUDNICK L R, TUETING D. Investigation of free radicals produced during coal liquefaction using ESR[J]. Fuel, 1984,63(2):153-157. doi: 10.1016/0016-2361(84)90028-0

    20. [20]

      DUBER S, WIECCKOWSKI A B. Effects of organic solvents on the EPR spectrum of coal[J]. Fuel, 1984,63(12):1641-1644. doi: 10.1016/0016-2361(84)90092-9

    21. [21]

      ZHENG Rong-ping. Research on quantitative determination of free radicals in coal by EPR and coal liquefaction mechanism[D]. Shanghai: East China University of Science and Technology, 2011.

    22. [22]

      ZHANG De-xiang, GAO Jin-sheng, ZHU Zhi-pei. The liquefaction of some Chinese low rank coals by hydrogenation in various heavy oils of petroleum[J]. J East Chin Univ Sci Technol, 1986(3):46-55.  

    23. [23]

      LIU Rui-min, XIA Wei-ping, ZHANG De-xiang, ZHENG Rong-ping, PAN Tie-ying. Coal liquefaction and the free racicals concentration of liquefied with the different capabitity of hydrogen-donor[C]//Papers collection of 2010 forum on development and demonstration projects of new coal chemical industry in China. Shanghai: East China University of Science and Technology, 2010: 228-235.

    24. [24]

      ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Quantitative determination of free radical content in coal by standard curve method[J]. J Mag Res, 2011,28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010

    25. [25]

      LIU Guo-gen, QIU Guan-zhou. A study on ESR spectrum of coal[J]. J Mag Res, 1999,16(2):177-180. doi: 10.3969/j.issn.1000-4556.1999.02.016

    26. [26]

      SHU Ge-ping, SHI Shi-dong, LI Ke-jian. Coal Liquefaction Technology[M]. Beijing:China Coal Industry Publishing House, 2003:91-94.

    27. [27]

      NIU Ben. Role of solvents and hydrogen transfer mechanism in direct coal liquefaction[D]. Dalian: Dalian University of Technology, 2017.

    28. [28]

      NIU B, JIN L J, LI Y, SHI Z W, YAN H X, HU H Q. Interaction between hydrogen-donor and nondonor solvents in direct liquefaction of bulianta coal[J]. Energy Fuels, 2016,30(12):10260-10267. doi: 10.1021/acs.energyfuels.6b02223

    29. [29]

      CHEN Li-shi. Structure analysis and molecular model construction of coal and its intermediate products derived from coal hydroliquefaction[D]. Shanghai: East China University of Science and Technology, 2018.

    30. [30]

      PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem, 1978,50(2):303-308. doi: 10.1021/ac50024a034

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    9. [9]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    10. [10]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(6)
  • Abstract views(1006)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return