Citation: Du Mengfan, Chen Qirong, Zou Yu, Yang Kaimeng, Hu Jianxin, Meng Xiangfu. Molten Salt Synthesis of TiO2 Nanosheet with Rich Oxygen Vacancies and Its Photocatalytic Activity[J]. Chemistry, ;2020, 83(3): 232-239. shu

Molten Salt Synthesis of TiO2 Nanosheet with Rich Oxygen Vacancies and Its Photocatalytic Activity

  • Corresponding author: Meng Xiangfu, xfmeng@cnu.edu.cn
  • Received Date: 25 November 2019
    Accepted Date: 28 December 2019

Figures(10)

  • The positive effects of oxygen vacancy defects on the performance of semiconductor materials are attracting increasing attention. Herein, blue TiO2 nanosheet with rich oxygen vacancies was successfully synthesized via a one-step molten salt method using the hydrolysis product of TiCl4 in trifluoroacetic acid as a precursor. Due to the low oxygen partial pressure of the molten salt, the lattice oxygen of TiO2 was consumed during calcination, leading to a large amount of oxygen vacancies and Ti3+. UV-Visible diffuse reflectance spectroscopy showed that the band gap of blue TiO2 nanosheets was reduced to 2.69 eV, and the light adsorption range was extended from the ultraviolet region to the visible region. The as-prepared blue TiO2 nanosheets exhibits excellent photocatalytic activity, and the photodegradation rate of rhodamine B is 47.3 times that of pure TiO2 under full-spectrum light irradiation. At the same time, the formed lattice fluorine doping can effectively stabilize the oxygen vacancies and greatly improve the separation efficiency of the photogenerated carriers. This work provides a new insight for constructing oxygen vacancies in semiconductor oxide materials.
  • 加载中
    1. [1]

      Fang W Z, Dappozze F, Guillard C, et al. J. Phys. Chem. C, 2017, 121(32):17068~17076. 

    2. [2]

      Peper J, Vinyard D, Brudvig G, et al. J. Am. Chem. Soc., 2017, 139(8):2868~2871. 

    3. [3]

      Fang W Z, Khrouz L, Zhou Y, et al. Phys. Chem. Chem. Phys., 2017, 19(21):13875~13881. 

    4. [4]

      Wang G M, Wang H Y, Ling Y C, et al. Nano Lett., 2011, 11(7):3026~3033. 

    5. [5]

      Xing M Y, Zhang J L, Chen F, et al. Chem. Commun., 2011, 47(17):4947~4949. 

    6. [6]

      Grabstanowicz L R, Gao S M, Li T, et al. Inorg. Chem., 2013, 52(7):3884~3890. 

    7. [7]

      Jiang W Y, Bai S, Wang L M, et al. Small, 2016, 12(12):1640~1648. 

    8. [8]

      Kong L N, Jiang Z Q, Wang C H, et al. Appl. Mater. Interf., 2015, 7(14):7752~7758. 

    9. [9]

      Zhang H, Cai J M, Wang Y T, et al. Appl. Catal. B, 2018, 220:126~136. 

    10. [10]

      Yang Y R, Gao P, Ren X C, et al. Appl. Catal. B, 2017, 218:751~757. 

    11. [11]

      Zhang X C, Hu W Y, Zhang K F, et al. ACS Sustain. Chem. Eng., 2017, 5(8):6894~6901. 

    12. [12]

      Yu C L, Wu Z, Liu R Y, et al. Appl. Catal. B, 2017, 209:1~11. 

    13. [13]

      Shannon R D, Pask J A. J. Am. Ceram. Soc., 1965, 48(8):391~198. 

    14. [14]

      Liu L J, Jiang Y Q, Zhao H L, et al. ACS Catal., 2016, 6(2):1097~1108. 

    15. [15]

      Pei Z X, Weng S X, Liu P. Appl. Catal. B, 2016, 180:463~470. 

    16. [16]

      Wang Y, Zhang H M, Han Y H, et al. Chem. Commun., 2011, 47(10):2829~2831. 

    17. [17]

      Eder D, Motta M S, Windle A H. Acta Mater., 2010, 58(13):4406~4413. 

    18. [18]

      Sarkar D, Ishchuk S, Taffa D H, et al. J. Phys. Chem. C, 2016, 120(7):3853~3862. 

    19. [19]

      Xu L M, Ming L F, Chen F. ChemCatChem, 2015, 7(12):1797~1800. 

    20. [20]

      Xing M Y, Zhang J L, Chen F, et al. Chem. Commun., 2011, 47(17):4947~4949. 

    21. [21]

      Zhou Y, Chen C H, Wang N N, et al. J. Phys. Chem. C, 2016, 120(11):6116~6124. 

    22. [22]

      Fang W Z, Xing M Y, Zhang J L. Appl. Catal. B, 2014, 160~161:240~246. 

    23. [23]

      Samsudin E M, Hamid S B A, Juan J C, et al. Appl. Surf. Sci., 2016, 365:57~68. 

    24. [24]

      Zou Y, Yang K M, Chen Q R, et al. RSC Adv., 2018, 8(64):36819~36825. 

    25. [25]

      Dai K, Lu L H, Liu Q, et al. Dalton Transac., 2014, 43(5):2202~2210. 

    26. [26]

      Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14(9):3808~3816. 

    27. [27]

      Zhu Q, Wang X J, Jiang J, et al. J. Phys. Chem. C, 2017, 121(41):22806~22814. 

    28. [28]

      Zhang N, Li X Y, Ye H C, et al. J. Am. Chem. Soc., 2016, 138(28):8928~8935. 

    29. [29]

      Kim W, Tachikawa T, Moon G H, et al. Angew. Chem. Int. Ed., 2014, 53(51):14036~14041. 

    30. [30]

      Liu B S, Cheng K, Nie S C, et al. J. Phys. Chem. C., 2017, 121(36):19836~19848 

    31. [31]

      Cushing S K, Meng F, Zhang J, et al. ACS Catal., 2017, 7(3):1742~1748. 

    32. [32]

      Lan Y P, Sohn H Y, Mohassab Y, et al. J. Am. Ceram. Soc., 2017, 100:1863~1875. 

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    12. [12]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(22)
  • Abstract views(3174)
  • HTML views(1089)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return