Citation: PENG Si-yan, YANG Liu-sai, LIU Qian-qian, YU Le-shu, WU Li-dan, YU Zhong. High active Pd/MgO catalyst for CO oxidative coupling to dimethyl oxalate[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 963-969. shu

High active Pd/MgO catalyst for CO oxidative coupling to dimethyl oxalate

  • Corresponding author: PENG Si-yan, psypsy524@126.com
  • Received Date: 21 February 2017
    Revised Date: 1 May 2017

    Fund Project: Innovation Training Foundation of College Student 2016-CX-10Natural Science Foundation of Jiangxi Province 20161BAB213058Natural Science Key Project of Jiangxi Province 2017ACB20040National Natural Science Foundation of China 21663021The project was supported by National Natural Science Foundation of China(21663021), Natural Science Key Project of Jiangxi Province(2017ACB20040), Natural Science Foundation of Jiangxi Province(20161BAB213058) and Innovation Training Foundation of College Student (2016-CX-10)

Figures(7)

  • The MgO support was first synthesized by the solution method, with which the Pd/MgO nanocatalyst was then prepared by the impregnation method. The structure and performance of prepared catalyst were characterized by XRD, CO2-TPD, BET, TG, SEM, TEM and catalytic evaluation device. The research result shows that the synthesized MgO support consists of uniform nanosheets and strong Lewis basic sites. The active Pd nanoparticles of Pd/MgO catalyst are highly dispersed on the surface of MgO support with small and homogeneous size. Moreover, the Pd/MgO nanocatalyst with a low Pd loading (0.5%) exhibits an excellent catalytic performance with 65% CO conversion, 96% selectivity to DMO and more than 100 h on stream at 130 ℃. for CO oxidative coupling to dimethyl oxalate, much higher than industrial catalyst (Pd/α-Al2O3), which has a good prospect of industrial application.
  • 加载中
    1. [1]

      ZHAO T J, CHEN D, DAI Y C, YUAN W K, HOLMEN A. Synthesis of dimethyl oxalate from CO and CH3ONO on carbon nanofiber supported palladium catalysts[J]. Ind Eng Chem Res, 43(16): 4595-4601. 

    2. [2]

      YIN A Y, GUO X Y, DAI W L, FAN K N. High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate[J]. Chem Commun, 2010,46(24):4348-4350. doi: 10.1039/c0cc00581a

    3. [3]

      CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2008,257(1):172-180. doi: 10.1016/j.jcat.2008.04.021

    4. [4]

      HE Z, LIN H Q, HE P, YUAN Y Z. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011,277(1):54-63. doi: 10.1016/j.jcat.2010.10.010

    5. [5]

      ZHU Y Y, WANG S R, ZHU L J, GE X L, LI X B, LUO Z Y. The Influence of copper particle dispersion in Cu/SiO2 catalysts on the hydrogenation synthesis of ethylene glycol[J]. Catal Lett, 2010,135(3/4):275-281.  

    6. [6]

      HU Q, FAN G L, YANG L, LI F. Aluminum-doped zirconia-supported copper nanocatalysts: Surface synergistic catalytic effects in the gas-phase hydrogenation of esters[J]. Chem Cat Chem, 2014,6(12):3501-3510.  

    7. [7]

      YUE H R, ZHAO Y J, MA X B, GONG J L. Ethylene glycol: properties, synthesis, and applications[J]. Chem Soc Rev, 2012,41(11):4218-4244. doi: 10.1039/c2cs15359a

    8. [8]

      ZHOU Zhang-feng, LI Zhao-ji, PAN Peng-bin, LIN Ling, QIN Ye-yan, YAO Yuan-gen. Progress in technologies of coal-based ethylene glycol synthesis[J]. Chem Ind Eng Prog, 2010,29(11):2003-2009.  

    9. [9]

      YAMAMOTO Y. Vapor phase carbonylation reactions using methyl nitrite over Pd catalysts[J]. Catal Surv Asia, 2010,14(3/4):103-110.  

    10. [10]

      XU Z N, SUN J, LIN C S, JIANG X M, CHEN Q S, PENG S Y, WANG M S, GUO G C. High-performance and long-lived Pd nanocatalyst directed by shape effect for CO oxidative coupling to dimethyl oxalate[J]. ACS Catal, 2013,3(2):118-122. doi: 10.1021/cs300759h

    11. [11]

      PENG S Y, XU Z N, CHEN Q S, CHEN Y M, SUN J, WANG Z Q, WANG M S, GUO G C. An ultra-low Pd loading nanocatalyst with high activity and stability for CO oxidative coupling to dimethyl oxalate[J]. Chem Commun, 2013,49(51):5718-5720. doi: 10.1039/c3cc00219e

    12. [12]

      ZHAO X G, LIN Q, XIAO W D. Characterization of Pd-CeO2/alpha-alumina catalyst for synthesis of dimethyl oxalate[J]. Appl Catal A: Gen, 2005,284(1/2):253-257.  

    13. [13]

      LIN Q, JI Y, JIANG Z D, XIAO W D. Effects of precursors on preparation of Pd/alpha-alumina catalyst for synthesis of dimethyl oxalate[J]. Ind Eng Chem Res, 2007,46(24):7950-7954. doi: 10.1021/ie070640b

    14. [14]

      JIANG X Z, SU Y H, LEE B J, CHIEN S H. A study on the synthesis of diethyl oxalate over Pd/alpha-Al2O3 catalysts[J]. Appl Catal A: Gen, 2001,211(1):47-51. doi: 10.1016/S0926-860X(00)00837-1

    15. [15]

      JIN E L, HE L L, ZHANG Y L, RICHARD A R, FAN M H. A nanostructured CeO2 promoted Pd/alpha-alumina diethyl oxalate catalyst with high activity and stability[J]. RSC Adv, 2014,4(90):48901-48904. doi: 10.1039/C4RA08170F

    16. [16]

      GAO Zheng-hong, HU Chao-quan, LI Zhen-hua, HE Fei, XU Gen-hui. Surface structure of Pd-Fe/α-Al2O3 catalyst for CO coupling to diethyl oxalate[J]. Chin J Catal, 2004,25(3):205-209.  

    17. [17]

      ZHANG Bing-kai, HUANG Cun-ping, GUO Ting-huang, WANG Jin-mu. Catalytic synthesis of oxalate diester by carbon monoxide coupling[J]. Chem Res Appl, 1990,2(3):21-25.  

    18. [18]

      LIN Qian, JI Yang, TAN Jun-qing, XIAO Wen-de. Mechanism of CO coupling to dimethyl oxalate over Pd/α-Al2O3[J]. Chin J Catal, 2008,29(4):325-329.  

    19. [19]

      UCHIUMI S, ATAKA K, MATSUZAKI T. Oxidative reactions by a palladium-alkyl nitrite system[J]. J Organomet Chem, 1999,576(1/2):279-289.  

    20. [20]

      WANG Chun-ying, DU Zhi-ming, CONG Xiao-min, TIAN Xiu-li. Investigation in thermal decomposition of basic magnesium carbonate[J]. Appl Chem Ind, 2008,37(6):657-660.  

    21. [21]

      LI Lin, ZHANG Lu-ming, ZHANG Yu-hua, LI Jin-lin. Effect of Ni loadings on the catalytic properties of Ni/MgO(111) catalyst for the reforming of methane with carbon dioxide[J]. J Fuel Chem Technol, 2015,43(3):315-322.  

    22. [22]

      LIU Z, CORTES-CONCEPCION J A, MUSTIAN M, AMIRIDIS M D. Effect of basic properties of MgO on the heterogeneous synthesis of flavanone[J]. Appl Catal A: Gen, 2006,302(2):232-236. doi: 10.1016/j.apcata.2006.01.007

    23. [23]

      LI S, CHEN C H, ZHAN E S, LIU S B, SHEN W J. Chirality inversion in enantioselective hydrogenation of isophorone over Pd/MgO catalysts in the presence of (S)-proline: Effect of Pd particle size[J]. J Mol Catal A: Chem, 2009,304(1/2):88-94.  

    24. [24]

      NIU Z Q, ZHEN Y R, GONG M, PENG Q, NORDLANDER P, LI Y D. Pd nanocrystals with single-, double-, and triple-cavities: Facile synthesis and tunable plasmonic properties[J]. Chem Sci, 2011,2(12):2392-2395. doi: 10.1039/c1sc00449b

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    5. [5]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    6. [6]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(0)
  • Abstract views(1703)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return