Citation: Wang Guilin, Sun Jinyu, Yin Aiping, Wang Yingjin, Zhao Minggen. Synthesis and Ultrafast Third-order Nonlinear Optical Response of Two Chalcone Derivatives[J]. Chemistry, ;2019, 82(11): 1027-1032. shu

Synthesis and Ultrafast Third-order Nonlinear Optical Response of Two Chalcone Derivatives

  • Corresponding author: Yin Aiping, aipingyin1964@163.com
  • Received Date: 17 May 2019
    Accepted Date: 28 June 2019

Figures(5)

  • Two chalcone derivatives, 1-ferrocenyl-3-(4, 5-benzothiophen-3-yl) acrylic ketone (FBTAK) and 1-ferrocenyl-3-(5-phenylthiophen-2-yl) acrylic ketone (FPTAK), were successfully synthesized and characterized by 1H NMR, 13C NMR and HR-MS. The third-order nonlinear optical (NLO) properties of the titled compounds were investigated by using Z-scan technique. Their geometrical structures, molecular orbital electron cloud images and related energies were calculated by density functional theory. Meanwhile, their UV-Vis absorption spectra and DSC curves were also measured. The molecular hyperpolarizability (γ) of FPTAK is 6.04, 4.3 and 3.7 times higher than those of FBTAK, 1-ferrocenyl-3-(4-t-butylphenyl) acrylic ketone (a) and 1-ferrocenyl-3-biphenylyl acrylic ketone (b), respectively. As far as the structure-activity relationship is concerned, the contribution of phenylthiophene is greater than that of benzothiophene and biphenyl. That is to say, thiophene ring contributes more than benzene ring. The results indicated that intramolecular electron transfer can occur and two compounds both exhibit an ultrafast third-order NLO response.
  • 加载中
    1. [1]

      S R Prabhu, A Jayarama, K Chandrasekharan et al. J. Mol. Struct., 2017, 1136: 244~252. 

    2. [2]

      S Muhammad, A G Al-Sehemi, M Pannipara et al. Optik, 2018, 164(1): 5~15. 

    3. [3]

      S K Turitsyn, J E Prilepsky, S T Le et al. Optica, 2017, 4(3): 307~322. 

    4. [4]

      A A Ionin, I O Kinyaevskiy, Y M Klimachev et al. Opt. Spectrosc., 2015, 119(3): 356~362. 

    5. [5]

      S R Maidur, J R Jahagirdar, P S Patil et al. Opt. Mater., 2018, 75: 580~594. 

    6. [6]

      J Lin, R Sa, M Zhang et al. J. Phys. Chem. A, 2015, 119(29): 8174~8181. 

    7. [7]

      M H Youssoufi, P K Sahu, P K Sahu et al. Med. Chem. Res., 2015, 24(6): 2381~2392. 

    8. [8]

      X Fu, J Feng, Z Dong et al. Eur. J. Org. Chem., 2011, 27: 5233~5236. 

    9. [9]

      E M Sharshira, N M M Hamada. Am. J. Org. Chem., 2012, 2(1): 26~31. 

    10. [10]

      S Czemmel, S C Heppel, J Bogs. Protoplasma, 2012, 249(2): 109~118. 

    11. [11]

      L R Almeida, M M Anjos, G C Ribeiro et al. New J. Chem., 2017, 41(4): 1744~1754. 

    12. [12]

      A Ekbote, P S Patil, S R Maidur et al. J. Mol. Struct., 2017, 1129: 239~247. 

    13. [13]

      S Kar, K S Adithya, P Shankar et al. J. Mol. Struct., 2017, 1139(5): 294~302. 

    14. [14]

      T C S Shetty, S Raghavendra, C S C Kumar et al. Opt. Laser Technol., 2016, 77: 23~30. 

    15. [15]

      B Pramodh, N K Lokanath, S Naveen et al. J. Mol. Struct., 2018, 1161: 9~17. 

    16. [16]

      H Zhao, Y Zhu, C Chen et al. Carbon, 2012, 50(13): 4894~4902. 

    17. [17]

      P Kaur, M Kaur, G Depotter et al.J. Mater. Chem., 2012, 22(21): 10597~10608. 

    18. [18]

      G Li, Y L Song, H W Hou et al. Inorg. Chem., 2003, 42(3): 913~920. 

    19. [19]

      Y C Liu, Y H Kan, S X Wu et al. J. Phys. Chem. A, 2008, 112(35): 8086~8092. 

    20. [20]

      V Shettigar, P S Patil, S Naveen et al. J. Cryst. Growth, 2006, 295: 44~49. 

    21. [21]

       

    22. [22]

      M J Frisch, G W Trucks, H B Schlegel et al. Gaussian 09, Revision B. 02, Gaussian, Inc., Wallingford CT, 2010.

    23. [23]

       

    24. [24]

      M Sheikbahae, A A Said, T H Wei et al. IEEE J Quantum Elect., 1990, 26(4): 760~769. 

    25. [25]

      N Ono, S Ito, C H Wu et al. Chem. Phys., 2000, 262(2-3): 467~473. 

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    5. [5]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Qian Peng Pengfei Yao Zicong Wang Xiufang Xu Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012

    12. [12]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    13. [13]

      Hui Li Jia Nie Zhongyuan Lü Hujun Qian Youliang Zhu Fuquan Bai Zexing Qu Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007

    14. [14]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    19. [19]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    20. [20]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

Metrics
  • PDF Downloads(8)
  • Abstract views(705)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return