Synthesis of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 and their catalytic performance in the conversion of methanol to hydrocarbons
- Corresponding author: LI Li-ping, liliping2004a@163.com
Citation:
LI Li-ping, GU Ling, JIN Chun, FEI Peng. Synthesis of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 and their catalytic performance in the conversion of methanol to hydrocarbons[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(10): 1244-1250.
STÖCKER M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999,29:3-48. doi: 10.1016/S1387-1811(98)00319-9
LIU Z, SUN C, WANG G, WANG Q, CAI G. New progress in R&D of lower olefin synthesis[J]. Fuel Process Technol, 2000,62:161-172. doi: 10.1016/S0378-3820(99)00117-4
YOKOI T, YOSHIOKA M, IMAI H, TATSUMI T. Diversification of RTH-Type Zeolite and Its Catalytic Application[J]. Angew Chem Int Ed, 2009,48:9884-9887. doi: 10.1002/anie.v48:52
BLEKEN F, SKISTAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections:comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011,13:2539-2549. doi: 10.1039/C0CP01982H
WESTGARD ERICHSEN M, SVELLE S, OLSBYE U. H-SAPO-5 as methanol-to-olefins (MTO) model catalyst:Towards elucidating the effects of acid strength[J]. J Catal, 2013,298:94-101. doi: 10.1016/j.jcat.2012.11.004
OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012,51:5810-5831. doi: 10.1002/anie.201103657
CHANG C D. The New Zealand Gas-to-Gasoline plant:An engineering tour de force[J]. Catal Today, 1992,13:103-111. doi: 10.1016/0920-5861(92)80190-X
CORMA A, PUCHE M, REY F, SANKAR G, TEAT S J. A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9-and 10-rings[J]. Angew Chem Int Ed, 2003,42:1156-1159. doi: 10.1002/anie.200390304
LIU S, XIE S, XU G, XU L, ZHU X. ITQ-13 molecular sieve catalyst for hydrocarbon catalytic conversion reaction, comprises ITQ-13 molecular sieve with silicon/aluminum ratio of larger than specified value, and binder: CN, 101530812A[P]. 2009-09-16.
CASTAÑEDA R, CORMA A, FORNÉS V, MARTÍNEZ-TRIGUERO J, VALENCIA S. Direct Synthesis of a member ring zeolite (Al-ITQ-13):A highly shape-selective catalyst for catalytic cracking[J]. J Catal, 2006,238:79-87. doi: 10.1016/j.jcat.2005.11.038
ZENG P, LIANG Y, JI S, SHEN B, LIU H, WANG B, ZHAO H, LI M. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energ Chem, 2014,23:193-200. doi: 10.1016/S2095-4956(14)60135-2
SKISTAD W, TEKETEL S, BLEKEN F L, BEATO P, BORDIGA S, NILSEN M H, OLSBYE U, SVELLE S, LILLERUD K P. Methanol conversion to hydrocarbons (MTH) over H-ITQ-13(ITH) zeolite[J]. Top Catal, 2014,57:143-158. doi: 10.1007/s11244-013-0170-7
LI L, CHEN Y, XU S, LI J, DONG M, LIU Z, JIAO H, WANG J, FAN W. Oriented control of Al locations in the framework of Al-Ge-ITQ-13 for catalyzing methanol conversion to propene[J]. J Catal, 2016,344:242-251. doi: 10.1016/j.jcat.2016.09.007
EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141:347-354. doi: 10.1006/jcat.1993.1145
ENGELHARDT G, MICHEL D. High-resolution solid-state NMR of silicates and zeolites[M]. New York, John Wiley and Sons, NY, 1987.
KENTGENS A P M, SCHOLLE K F M G J, VEEMAN W S. Effect of hydration on the local symmetry around aluminum in ZSM-5 zeolites studied by aluminum-27 nuclear magnetic resonance[J]. J Phys Chem, 1983,87:4357-4360. doi: 10.1021/j100245a008
MIN H-K, PARK M B, HONG S B. Methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites[J]. J Catal, 2010,271:186-194. doi: 10.1016/j.jcat.2010.01.012
MIRODATOS C, BARTHOMEUF D. Cracking of n-decane on zeolite catalysts:Enhancement of light hydrocarbon formation by the zeolite field gradient[J]. J Catal, 1988,114:121-135. doi: 10.1016/0021-9517(88)90014-0
HE Y, LIU M, DAI C, XU S, WEI Y, LIU Z, GUO X. Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction[J]. Chinese J Catal, 2013,34:1148-1158. doi: 10.1016/S1872-2067(12)60579-8
CHOUDHARY V R, BANERJEE S, PANJALA D. Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite:effect of space velocity[J]. Microporous Mesoporous Mater, 2002,51:203-210. doi: 10.1016/S1387-1811(01)00483-8
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Yuanyu YANG , Jianhua XUE , Yujia BAI , Lulu CUI , Dongdong YANG , Qi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
Mengyu Wu , Kewei Ren , Chengyu Zou , Jiacheng Chen , Rui Ma , Chuan Zhu , Chao Feng . A general synthesis of gem–difluorobicyclo[2.1.1]hexanes. Chinese Chemical Letters, 2025, 36(5): 110213-. doi: 10.1016/j.cclet.2024.110213
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
(a): SiGeAl-ITQ-13; (b): SiAl(B)-ITQ-13; (c): ZSM-5