Citation: Jiang Xuefei, Nie Bingyu, Ma Ning, Wu Yang. A Theoretical Investigation of Nano-Microstructure for Gaseous Bipolymer[C1~6mim]2[BF4]2[J]. Chemistry, ;2018, 81(2): 139-147. shu

A Theoretical Investigation of Nano-Microstructure for Gaseous Bipolymer[C1~6mim]2[BF4]2

  • Corresponding author: Wu Yang, wuyang@lnu.edu.cn
  • Received Date: 18 September 2017
    Accepted Date: 6 November 2017

Figures(4)

  • The interaction mechanisms and nanostructure between the cation and anion in 1-alkyl-3-methyl-imidazolium tetrafluroborate ionic liquids[Cnmim]2[BF4]2 were investigated at the B3LYP/6-311+G(d, p) level. Through the theoretical calculation of the energy of the interaction of the dimer, it is found that there is a strong hydrogen bond between[Cnmim]+ (n=1~6) and[BF4]-, and the interaction energy increases with the augmenting of imidazolium alkyl chain length. This consequence indicated that imidazolium alkyl chain length affects the strength of the hydrogen bonds. When the number of carbon on the imidazolium alkyl side chains is greater than four, The polymerization of alkyl tail is happen to form a kind of miecllar nanostructure. Through the analysis and calculation of NPA, NBO and weak interaction, it was also proved that there is a strong hydrogen bond in the dimer, and the number of carbon in the alkyl side chain affects the ionic liquid microstructure.
  • 加载中
    1. [1]

      K R Seddon. J. Chem. Technol. Biotechnol., 1997, 4(68): 351~356. 

    2. [2]

       

    3. [3]

      T Torimoto, T Tsuda, K-I Okazaki et al. Adv. Mater., 2010, 22(11): 1196~1221. 

    4. [4]

      D R Marfarlane, K R Seddon. Aust. J. Chem., 2007, 1(60): 3~5. 

    5. [5]

      S A Forsyth, J M Pringle, D R Macfarlane. Aust. J. Chem., 2004, 2(57): 113~119. 

    6. [6]

      H Matcumoto, T Matsuda, Y Miyanzaki. Chem. Lett., 2000, 12: 1430~1431. 

    7. [7]

      H Stegemann, A Rhode, A Reiche et al. Electrochim. Acta, 1992, 3(37): . 379~383. 

    8. [8]

      N M M Mateus, L C Branco, N M T Lourenço et al. Green Chem., 2003, 5(3): 347~352. 

    9. [9]

      H B Xie, S B Zhang, Ha F Duan. Tetrahed. Lett., 2004, 45(9): 2013~2015. 

    10. [10]

      M-L Pujol-Fortin, J-C Galin. Macromolecules, 1991, 16(24): 4523~4530. 

    11. [11]

      T Welton. Chem. Rev., 1999, 8(99): 2071~2083. 

    12. [12]

       

    13. [13]

       

    14. [14]

       

    15. [15]

      B Muñoz-Sánchez, J Nieto-Maestre, I Iparraguirre-Torres et al. Silica and alumina nano-enhanced molten salts for thermal energy storage: A comparison[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1850(1): 080018. 

    16. [16]

      X C Kang, X X Ma, J L Zhang et al. Chem. Commun., 2016, 52(99): 14286~14289. 

    17. [17]

      R Hayes, G G Warr, R Atkin. Chem. Rev., 2015, 115(13): 6357~6426. 

    18. [18]

       

    19. [19]

      A A H Pádua, J N A C Lopes. Ionic Liquids Ⅳ: Not Just Solvents Anymore//ACS Symposium Series, 2007, 975: 86~101. 

    20. [20]

      M Fakhraee, M R Gholami. Phys. Chem. Chem. Phys., 2016, 18(14): 9734~9751. 

    21. [21]

      Y Q Zhang, H Y He, K Dong et al. RSC Adv, 2017, 7(21): 12670~12681. 

    22. [22]

      R Hayes, S Imberti, G G Warr et al. J. Phys. Chem. C, 2014, 118(25): 13998~14008. 

    23. [23]

      A S M C Rodrigues, L M N B F Santos. ChemPhysChem, 2016, 17(10): 1512~1517. 

    24. [24]

      K Shimizu, G M F Costa, A A H Pádua et al. J. Mol. Struct: Theochem, 2010, 946(1/3): 70~76. 

    25. [25]

      C J Margulis. Mol. Phys., 2004, 102(9/10): 829~838. 

    26. [26]

      C Tanford. Biochem. Soc. Transac., 1987, 15: 1S~7S. 

    27. [27]

      S M Urahata, M C C Ribeiro. J. Chem. Phys., 2004, 120(4): 1855~1863. 

    28. [28]

      L Zhang, H R Li, Y Wang et al. J. Phys. Chem. B, 2007, 37(111): 11016~11020. 

    29. [29]

      H Y Gao, Y Zhang, H J Wang et al. J. Phys. Chem. A, 2010, 37(114): 

    30. [30]

      S F Boys, F Bernardi. Mol. Phys., 2006, 19(4): 553~566. 

    31. [31]

      M J Frisch, G W Trucks, H B Schlegel et al. Wallingford CT: Gaussian, Inc., 2013.

    32. [32]

      A A H Padua, J N A C Lopes. J. Phys. Chem. B, 2006, 110(7): 3330~3335. 

    33. [33]

      J N C Lopes, M F C Gomes, A A H Padua. J. Phys. Chem. B, 2006, 110(34): 16816~16818. 

    34. [34]

       

    35. [35]

      K Kitaura, K Morokuma. Int. J. Quant. Chem., 1976, 10(2): 325~340. 

    36. [36]

      L M Epstein, E S Shubina. Coord. Chem. Rev., 2002, 231(1~2): 165~181. 

    37. [37]

       

    38. [38]

      L F Pacios. J. Phys. Chem. A, 2004, 108(7): 1177~1188. 

    39. [39]

      Y Wang, H Li, S Han. J. Chem. Phys., 2005, 123(17): 174501. 

    40. [40]

      F P Luis. J. Phys. Chem. A, 2004, 108(7): 1177~1188. 

    41. [41]

      A Knorr, R Ludwig. Sci. Rep., 2015, 5: 17505. 

    42. [42]

       

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    4. [4]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    15. [15]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    16. [16]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(4)
  • Abstract views(554)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return