Citation: Xueya Liu, Jinping Ren, Furong Tao, Yuezhi Cui, Libin Liu. Research Progress in the Preparation of Biomass-Based Superhydrophobic Materials in Different Solvents[J]. Chemistry, ;2021, 84(5): 433-440. shu

Research Progress in the Preparation of Biomass-Based Superhydrophobic Materials in Different Solvents

  • Corresponding author: Furong Tao, frtao2015@126.com
  • Received Date: 16 November 2020
    Accepted Date: 19 January 2021

Figures(4)

  • Biomass materials are renewable, inexpensive and pollution-free, and are commonly used in the preparation of superhydrophobic materials. Superhydrophobic materials have attracted much attention because of their high water repellency and self-cleaning ability, but they also bring different degrees of pressure to the environment during the preparation process due to the choice of solvents and low surface energy substances. In this paper, the preparation methods of biomass-based superhydrophobic materials are introduced, and according to the different solvents used in the preparation technology, the biomass-based superhydrophobic materials are divided into organic solvent type, water-based/semi-water-based type and non-solvent type, and the advantages and disadvantages of three different types of superhydrophobic materials are summarized. At the end of this article, the measures for preparing environmentally friendly superhydrophobic materials are summarized, and the future development direction of biomass-based superhydrophobic materials is prospected.
  • 加载中
    1. [1]

      Zhu Z, Fu S, Basta A H. Carbohyd. Polym., 2020, 243: 116444. 

    2. [2]

      Chen S, Song Y J, Xu F. ACS Sustain. Chem. Eng., 2018, 6(4): 5173~5181. 

    3. [3]

      Guo H, Xing Y, Yuan H, et al. Surf. Eng., 2019, 36(6): 621~627.

    4. [4]

      Pan Q, Gao Y, Xue W, et al. Langmuir, 2019, 35(35): 11414~11421. 

    5. [5]

      Cheng Q Y, An X P, Li Y D, et al. ACS Sustain. Chem. Eng., 2017, 5(12): 11440~11450. 

    6. [6]

      Zeng Q, Zheng C, Han K, et al. Prog. Org. Coat., 2020, 140: 105498. 

    7. [7]

       

    8. [8]

       

    9. [9]

      Sara N, Silvia D, Pasquale P, et al. J. Colloid Interf. Sci., 2020, 574: 20~34. 

    10. [10]

      Lv D M, Ou J F, Hu W H, et al. RSC Adv., 2015, 5(61): 49459~49465. 

    11. [11]

      Zhang H L, Ji X X, Liu L B, et al. Chem. Eng. J., 2020, 402: 126160. 

    12. [12]

      Wang Y L, Wang M K, Wang J, et al. J. Taiwan Inst. Chem. Eng., 2019, 99: 215~223. 

    13. [13]

      Ren J P, Tao F R, Liu L B, et al. Carbohyd. Polym., 2019, 232: 115807.

    14. [14]

      Lin D M, Zeng X R, Li H Q, et al. J. Colloid Interf. Sci., 2019, 533: 198~206. 

    15. [15]

      Li Y F, Chen C J, Song J W, et al. Chin. J. Chem., 2020, 38(8): 823~829. 

    16. [16]

      Seyfi J, Hejazi I, Jafari S H, et al. Polymer, 2015, 56: 358~367. 

    17. [17]

      Ma W J, Zhang Q, Hua D W, et al. RSC Adv., 2016, 6(16): 12868~12884. 

    18. [18]

      Wong T I, Wang H, Wang F K, et al. J. Colloid Interf. Sci., 2016, 467: 245~252. 

    19. [19]

      Hwang G B, Page K, Patir A, et al. ACS Nano, 2018, 12(6): 6050~6058. 

    20. [20]

      Li L, Xu Z Z, Sun W, et al. J. Membrane Sci., 2020, 598: 117661. 

    21. [21]

      Chen J H, Zhou Y, Zhou C L, et al. Chem. Eng. J., 2019, 370: 1218~1227. 

    22. [22]

      Wang J F, Xue Z M, Yu T T, et al. Chem. Asian J., 2017, 12(14): 1773~1779. 

    23. [23]

      Zhou S K, Liu P P, Wang M, et al. ACS Sustain. Chem. Eng., 2016, 4(12): 6409~6416. 

    24. [24]

      Huang J D, Wang S Q, Lyu S Y, et al. Ind. Crops Prod., 2018, 122: 438~447. 

    25. [25]

      Cheng Q Y, Guan C S, Wang M, et al. Carbohyd. Polym., 2018, 199: 390~396. 

    26. [26]

      Orsolini P, Antonini C, Stojanovic A, et al. Cellulose, 2017, 25(2): 1127~1146.

    27. [27]

      Musikavanhu B, Hu Z J, Dzapata R L, et al. Appl. Surf. Sci., 2019, 496: 143648. 

    28. [28]

      Arslan O, Aytac Z, Uyar T, et al. ACS Appl. Mater. Interf., 2016, 8(30): 19747~19754. 

    29. [29]

      Zhang S Y, Lu F, Tao L, et al. ACS Appl. Mater. Interf., 2013, 5(22): 11971~11977. 

    30. [30]

      Wang S F, Sha J L, Wang W, et al. Carbohyd. Polym., 2018, 195: 39~44. 

    31. [31]

      Su C P, Yang H, Zhao H P, et al. Chem. Eng. J., 2017, 330: 423~432. 

    32. [32]

      Song W L, Gaware V S, Rúnarsson Ö V, et al. Carbohyd. Polym., 2010, 81(1): 140~144. 

    33. [33]

      Liu M M, Hou Y Y, Li J, et al. J. Colloid Interf. Sci., 2018, 519: 130~136. 

    34. [34]

      Zhou H, Wang H X, Niu H T, et al. Adv. Funct. Mater., 2017, 27(14): 1604261. 

    35. [35]

      Li Y B, Hu T, Li B C, et al. Adv. Funct. Mater., 2019, 6(23): 1901255.

    36. [36]

      Baidya A, Ganayee M A, Jakka Ravindran S, et al. ACS Nano, 2017, 11(11): 11091~11099. 

    37. [37]

      Baidya A, Yatheendran A, Ahuja T, et al. Adv. Mater. Interf., 2019, 6(23): 1901013. 

    38. [38]

      Chen K L, Zhou J L, Che X G, et al. J. Colloid Interf. Sci., 2020, 566: 401~410. 

    39. [39]

      Gu W, Song K, Cheng Z, et al. Adv. Mater. Interf., 2020, 7(10): 1902201. 

    40. [40]

      Fu S, Zhou H, Wang H, et al. RSC Adv., 2018, 8(2): 717~723. 

    41. [41]

      Liu M, Hou Y, Li J, et al. J. Colloid Interf. Sci., 2018, 519: 130~136. 

    42. [42]

      Baidya A, Das S K, Ras R H, et al. Adv. Mater. Interf., 2018, 5(11): 1701523. 

    43. [43]

      Gallyamov M O, Nikitin L N, Obraztsov A N, et al. Colloid J., 2007, 69: 411~424. 

    44. [44]

      Olin P, Hyll C, Ovaskainen L, et al. Ind. Eng. Chem. Res., 2015, 54(3): 1059~1067. 

    45. [45]

      Zhang Z X, Zhang T, Zhang X, et al. Prog. Org. Coat., 2017, 111: 322~326. 

    46. [46]

      Ratcharak O, Sane A. J. Supercrit. Fluids, 2014, 89: 106~112. 

    47. [47]

      Ozbay S, Cengiz U, Erbil H. ACS Appl. Polym. Mater., 2019, 1(8): 2033~2043. 

    48. [48]

      Dong S T, Li Y B, Tian N, et al. ACS Appl. Mater. Interf., 2018, 10(49): 41878~41882. 

    49. [49]

      Yang Y S, He H S, Li Y G, et al. Sci. Rep., 2019, 9(1): 9961~9970. 

    50. [50]

      Medina-Sandoval C F, Valencia-Dávila J A, Combariza M Y, et al. Fuel, 2018, 231: 297~306. 

    51. [51]

      Schutzius T M, Bayer I S, Qin J, et al. ACS Appl. Mater. Interf., 2013, 5(24): 13419~13425. 

    52. [52]

      Cai R G, Glinel K, De Smet D, et al. ACS Appl. Mater. Interf., 2018, 10(18): 15346~15351. 

    53. [53]

      Zhao D D, Pan M W, Yuan J F, et al. Prog. Org. Coat., 2020, 138: 105368. 

    54. [54]

      Ye H, Zhu L Q, Li W P, et al. J. Mater. Chem. A, 2017, 5(20): 9882~9890. 

    55. [55]

      López A B, Delacal J C, Asua J M. Polymer, 2017, 124: 12~19. 

    56. [56]

      Deng X, Paven M, Papadopoulos P, et al. Angew. Chem. Int. Ed., 2013, 52(43): 11286~11289. 

    57. [57]

      Liu M, Luo Y F, Jia D M. Chem. Eng. J., 2019, 368: 18~28. 

    58. [58]

      Liu G, Wong W S, Nasiri N, et al. Nanoscale, 2016, 8(11): 6085~6093. 

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    4. [4]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    5. [5]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    6. [6]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    9. [9]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    10. [10]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    11. [11]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    14. [14]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    15. [15]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    18. [18]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(54)
  • Abstract views(4311)
  • HTML views(943)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return