Citation: Chen Xin, Yuan Yanglei, Zhang Yuanyuan, Wang Hongmei, Zhang Li, Chen Qing. A Highly Sensitive and Selective Probe Based on Coumarin for Fluorescent and Colorimetric Detection of Pd2+ in Pure Water[J]. Chemistry, ;2020, 83(5): 442-447. shu

A Highly Sensitive and Selective Probe Based on Coumarin for Fluorescent and Colorimetric Detection of Pd2+ in Pure Water

  • Corresponding author: Wang Hongmei, whmd@cau.edu.cn
  • Received Date: 16 January 2020
    Accepted Date: 17 February 2020

Figures(11)

  • A coumarin-based fluorescent probe (compound 1) for Pd2+ has been designed and synthesized. Compound 1 consists of a coumarin and a carboxymethyl hydroxylamine moiety which can detect Pd2+ in pure water with high selectivity and sensitivity. The detection limit of the probe was as low as 4.0×10-8 mol/L. The probe can effectively detect Pd2+ in the pH range of 4~9.
  • 加载中
    1. [1]

      (a) Goswami S, Manna A, Maity A K, et al. Dalton Transac., 2013, 42: 12844~12848; (b) Iwasawa T, Tokunaga M, Obora Y, et al. J. Am. Chem. Soc., 2004, 126: 6554~6555; (c) Lafrance M, Fagnou K. J. Am. Chem. Soc., 2006, 128: 16496~16497; (d) Zhang G, Wen Y, Guo C, et al. Anal. Chim. Acta, 2013, 805: 87~94; (e) Zhou Y, Zhang J, Zhou H, et al. Sens. Actuat. B, 2012, 171-172: 508~514.

    2. [2]

      (a) Li H, Fan J, Peng X. Chem. Soc. Rev., 2013, 42: 7943~7962; (b) Pyrzynska K. J. Environ. Monit., 2000, 2: 99N~103N.

    3. [3]

      (a) Qiao B, Sun S, Jiang N, et al. Dalton Transac., 2014, 43: 4626~4630; (b) Carey J S, Laffan D, Thomson C, et al. Org. Biomol. Chem., 2006, 4: 2337~2347; (c) Garrett C E, Prasad K. Adv. Synth. Catal., 2004, 346: 889~900; (d) Keum D, Kim S, Kim Y. Chem. Commun., 2014, 50, 12: 68~1270.

    4. [4]

      (a) Kumar A, Chhatwal M, Singh A K, et al. Chem. Commun., 2014, 50: 8488~8490; (b) Benes L, Ravindra K, Grieken R V. Spectrochim. Acta, B, 2003, 58: 1723~1755; (c) Cui J, Li D, Shen S, et al. RSC Adv., 2015, 5: 3875~3880; (d)Van Meel K, Smekens A, Behets M, et al. Anal. Chem., 2007, 79: 6383~6389; (e) Locatelli C, Melucci D, Torsi G. Anal. Bioanal. Chem., 2005, 382: 1567~1573; (f) Dimitrova B, Benkhedda K, Ivanova E, et al. J. Anal. Atom Spectrom., 2004, 19: 1394~1396.

    5. [5]

      Chen X, Pradhan T, Wang F, et al. Chem. Rev., 2012, 112: 1910~1956.

    6. [6]

      (a) Goswami S, Sen D, Das N K, et al. Chem. Commun., 2011, 47: 9101~9103; (b) Cai S, Lu Y, He S, et al. Chem. Commun., 2013, 49: 822~824; (c) Sun S, Qiao B, Jiang N, et al. Org. Lett., 2014, 16: 1132~1135; (d) Wang H, Lang Y, Wang H, et al. Tetrahedron, 2014, 70: 1997~2002; (e) Wang M, Yuan Y, Wang H, et al. Analyst, 2016, 141: 832~835; (f) Kumar P, Kumar V, Gupta R. RSC Adv., 2017, 7: 7734~7741; (g) Li Y, Yang L, Du M, et al. Analyst, 2019, 144: 1260~1264; (h) Li H, Fan J, Hu M, et al. Chem. Eur. J., 2012, 18: 12242~12250; (i) Cai S, Lu Y, He S, et al. Chem. Commun., 2013, 49: 822~824.

    7. [7]

      (a) Lau H K Y, Lott P F. Talanta, 1970, 17: 717~727; (b) Schwarz Te, Muller H, Dosche C, et al. Angew. Chem. Int. Ed., 2007, 46: 1671~1674; (c) Li H, Fan J, Song F, et al. Chem. Eur. J., 2010, 16: 12349~12356; (d) Schwarze T, Dosche C, Flehr R, et al. Chem. Commun., 2010, 46: 2034~2036; (e) Schwarze T, Mickler W, Dosche C, et al. Chem. Eur. J., 2010, 16: 1819~1825.

    8. [8]

      (a) Wang M, Liu X, Lu H, et al. ACS Appl. Mater. Interf., 2015, 7: 1284~1289; (b) Kaur P, Kaur N, Kaur M, et al. RSC Adv., 2014, 4: 16104~16108; (c) Tamayo A, Escriche L, Casabó J, et al. Eur. J. Inorg. Chem., 2006, 2006: 2997~3004; (d) Kubo K, Miyazaki Y, Akutsu K, et al. Heterocycles, 1999, 51: 965~968; (e) Che C, Chen X, Wang H, et al. New J. Chem., 2018, 42: 12773~12778.

    9. [9]

      (a) Mahapatra A K, Manna S K, Maiti K, et al. Analyst, 2015, 140: 1229~1236; (b) Huang D D, Zhao M, Lv X X, et al. Analyst, 2018, 143: 511~518; (c) Manna C K, Gharami S, Aich K, et al. New J. Chem., 2019, 43: 16915~16920; (d) Mondal S, Manna S K, Pathak S, et al. New J. Chem., 2019, 43: 3513~3519; (e) Zhang Y S, Balamurugan R, Lin J C, et al. Analyst, 2017, 142: 1536~1544.

    10. [10]

      (a) Duan L, Xu Y, Qian X. Chem. Commun., 2008, 47: 6339~6341; (b)Li H, Fan J, Du J, et al. Chem. Commun., 2010, 46: 1079~1081; (c) Cui J, Li D P, Shen S L, et al. RSC Adv., 2015, 5: 3875~3880; (d) Wang L, Ren M, Li Z, et al. New J. Chem., 2019, 43: 552~555.

    11. [11]

      (a) Huang H, Wang K, Tan W, et al. Angew. Chem. Int.Ed., 2004, 43: 5635~5638; (b) Liu B, Bao Y, Du F, et al. Chem. Commun., 2011, 47: 1731~1733; (c) Liu B, Bao Y, Wang H, et al. J. Mater. Chem., 2012, 22: 3555~3561; (d) Zhang G, Wen Y, Guo C, et al. Anal. Chim. Acta, 2013, 805: 87~94.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    4. [4]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    5. [5]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    6. [6]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    7. [7]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    8. [8]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    9. [9]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    10. [10]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    11. [11]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    12. [12]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    13. [13]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    14. [14]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    15. [15]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    18. [18]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    19. [19]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    20. [20]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

Metrics
  • PDF Downloads(10)
  • Abstract views(672)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return