Citation: Wang Xi, Yang Changyun, Ou Sha. Syntheses of Metal-Organic Frameworks and Their Applications in Fluorescence Sensors[J]. Chemistry, ;2019, 82(3): 202-208, 213. shu

Syntheses of Metal-Organic Frameworks and Their Applications in Fluorescence Sensors

  • Corresponding author: Ou Sha, 11337057@zju.edu.cn
  • Received Date: 12 September 2018
    Accepted Date: 1 November 2018

Figures(5)

  • Metal-organic frameworks (MOFs) are a class of materials that are formed by metal nodes or secondary building units (SBUs) and organic ligands that are self-assembled through coordination bonds. They have been extensively studied for their rich structural chemistry and potential applications in numerous area. Recent studies on luminescent MOFs in both bulk and nanoparticle forms have shown that these materials possess excellent luminescence emission properties that can be utilized to effectively detect solvent molecules, heavy metal ions, aflatoxin, nitrobenzene explosives, iodide ions and so on. In addition, developing highly sensitive, selective, fast-responding and fully reversible sensors for toxic substances and explosives' detection is in great demand for the homeland security, environmental safety and other humanitarian concerns. This paper mainly discusses the possible mechanisms and development prospects of MOF materials as fluorescent sensors.
  • 加载中
    1. [1]

      H C Zhou, J R Long, O M Yaghi. Chem. Rev., 2012, 112:673~674. 

    2. [2]

      C Janiak, J K Vieth. New J. Chem., 2010, 34:2366~2388. 

    3. [3]

      Y Wen, J Fang, H J Kong. Chem. Rev., 2016, 12:365~370.

    4. [4]

      E Coronado, G M Espallargas. Chem. Soc. Rev., 2013, 42:1525~1539. 

    5. [5]

      H R Moon, D W Lim, M P Suh et al. Chem. Soc. Rev., 2013, 42:1807~1824. 

    6. [6]

      K Sumida, D L Rogow, J A Mason. Chem. Rev., 2012, 112:724~781. 

    7. [7]

      M J Dong, M Zhao, S Ou et al. Angew. Chem. Int. Ed., 2014, 126:1601~1605. 

    8. [8]

      J R Li, J Sculley, H C Zhou et al. Chem. Rev., 2012, 112:869~931. 

    9. [9]

      M P Suh, H J Park, T K Prasad et al. Chem. Rev., 2012, 112:782~835. 

    10. [10]

      P Horcajada, R Gref, T Baati et al. Chem. Rev., 2013, 115:1232~1268.

    11. [11]

      K Vanish, K H Kima, K Pawan et al. Coord. Chem. Rev., 2017, 342:80~105. 

    12. [12]

      Y Q Dong, J H Cai, Q Q Fang et al. Chem. Rev., 2016, 88:1748~1752.

    13. [13]

      Y Li, S S Zhang, D T Song et al. Angew. Chem. Int. Ed., 2013, 52(2):710~713. 

    14. [14]

      J W Ye, L M. Zhao, R F Bogale et al. Chem. Eur. J., 2015, 21:2029~2037.

    15. [15]

      S Pramanik, Z C Hu, X Zhang et al. Chem. Eur. J., 2013, 19:15964~15971. 

    16. [16]

      B Wang, X L Li, D W Feng et al. J. Am. Chem. Soc., 2016, 138:6204~6216. 

    17. [17]

      S Khatua, S Goswami, S Biswas et al. Chem. Mater., 2015, 27:5349~5360. 

    18. [18]

      G Y Wang, C Song, D M Kong et al. J. Mater. Chem. A, 2014, 2:2213~2220. 

    19. [19]

      Z S Dou, J C Yu, Y J Cui et al. J. Am. Chem. Soc., 2014, 136:5527~5530. 

    20. [20]

      Z C Hu, P William, J M Zhang et al. J. Am. Chem. Soc., 2015, 137:16209~16215. 

    21. [21]

      X Zhang, Q Hu, T F Xia et al. ACS Appl. Mater. Interf., 2016, 8:32259~32265. 

    22. [22]

      P F Shi, H C Hu, Z Y Zhang et al. Chem. Commun., 2015, 51:3985~3988. 

    23. [23]

      L L Wen, X F Zheng, L Kangle et al. Inorg. Chem., 2015, 54:7133~7135. 

    24. [24]

      Y W Li, J R Li, L F Wang et al. J. Mater. Chem. A, 2013, 1:495~499. 

    25. [25]

      Y Q Xiao, Y J Cui, Q Zheng. Chem. Commun., 2010, 46:5503~5505. 

    26. [26]

      N D Rudd, H Wang, M A Erika et al. ACS Appl. Mater. Interf., 2016, 8:30294~30303. 

    27. [27]

      Z Chen, Y W Sun, L L Zhang et al. Chem. Commun., 2013, 49:11557~11559. 

    28. [28]

      R M Wang, X B Liu, Z Huang et al. Inorg. Chem., 2016, 55:1782~1787. 

    29. [29]

      H Xu, M Fang, C S Cao et al. Inorg. Chem., 2017, 60:4790~4794.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    7. [7]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    13. [13]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    18. [18]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(20)
  • Abstract views(1359)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return