Citation: Wang Chunhao, Cui Chuanjin, Zhao Yuqiu, Gu Xuejing. Progress in Microorganisms Detection Using Nano-Material Based Electrochemical Biosensor[J]. Chemistry, ;2018, 81(10): 890-895. shu

Progress in Microorganisms Detection Using Nano-Material Based Electrochemical Biosensor

  • Corresponding author: Cui Chuanjin, chuanjincui@126.com
  • Received Date: 26 May 2018
    Accepted Date: 14 August 2018

Figures(4)

  • Pathogenic microorganism is a kind of important microorganisms which affect human health. Nano electrochemical immune-biosensors have the advantages of fast detection, high sensitivity, low detection limit and low cost in the detection of pathogenic microorganisms. The research progress in several nano-material based electrochemical biosensors was reviewed in this paper. How to use different nano-materials to improve the electrochemical biosensors performance was analyzed. Different sensors' detecting results are compared and analyzed. Finally, the future development trend was prospected.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

    5. [5]

      A Mokhtarzadeh, R Eivazzadeh-Keihan, P Pashazadeh et al. Trend. Anal. Chem., 2017, 97:445~446. 

    6. [6]

      I Khalil, S Rahmati, N M Julkapli et al. J. Ind. Eng. Chem., 2018, 59:426. 

    7. [7]

      G Maduraiveeran, M Sasidharan, V Ganesan. Biosens. Bioelectron., 2018, 103:113~129. 

    8. [8]

       

    9. [9]

      C Liu, J Dong, I N Geoffrey et al. Biosens. Bioelectron., 2018,101:110~115. 

    10. [10]

       

    11. [11]

      D M Luna, K Y Avelino, M T Cordeiro et al. Sens. Actuat. B, 2015, 220:565~572. 

    12. [12]

      D Wang, W C Dou, G Y Zhao et al. J. Microbiol. Methods, 2014, 106:110~118. 

    13. [13]

      N Krithiga, K B Viswanath, V S Vasantha et al. Biosens. Bioelectron., 2016, 79:121~129. 

    14. [14]

      Q L Sheng, Y Shen, J Zhang et al. Anal. Methods, 2017, 1:163~169.

    15. [15]

      M Yusoff, P Rameshkumar, M S Mehmood et al. Biosens. Bioelectron., 2017, 87:1020~1028. 

    16. [16]

       

    17. [17]

      A Abbaspour, F N Sarvestani, A Noori et al. Biosens. Bioelectron., 2015, 68:149~155. 

    18. [18]

      A Valipour, M Roushani. Biosens. Bioelectron., 2017, 89(2):946~951. 

    19. [19]

      J L Huang, Z X Xie, Z Q Xie et al. Anal. Chim. Acta, 2016, 913:121~127. 

    20. [20]

      Y Li, L C Fang, P Cheng et al. Biosens. Bioelectron., 2013, 49:485~491. 

    21. [21]

      Q Yan, Y Y Yang, Z L Tan et al. Biosens. Bioelectron., 2018, 103:151~157. 

    22. [22]

      M D Li, P Wang, F B Pei et al. J. Electroanal. Chem., 2018, 809:14~21. 

    23. [23]

      M Kim, J Jang, C Cha. Drug Discov. Today, 2017, 22(9):1430~1437. 

    24. [24]

      B Prieto-Simón, N M Bandaru, C Saint et al. Biosens. Bioelectron., 2015, 67:642~648. 

    25. [25]

      J Bhardwaj, S Devarakonda, S Kumar et al. Sens. Actuat. B, 2017, 253:115~123. 

    26. [26]

      M S Yoo, M Shin, Y H Kim et al. Chemosphere, 2017, 175:269~274. 

    27. [27]

      R Y A Hassan, H N A Hassan, M S Abdel-Aziz et al. Sens. Actuat. B, 2014, 203:848~853. 

    28. [28]

      C H Gayathri, P Mayuri, K Sankaran et al. Biosens. Bioelectron., 2016, 82:71~77. 

    29. [29]

       

    30. [30]

      S Viswanathan, C Rani, J A Ho. Talanta, 2012, 94:315~319. 

    31. [31]

      Y Song, Y N Luo, C Z Zhu et al. Biosens. Bioelectron., 2015, 76:195~212. 

    32. [32]

      Z X Xie, J L Huang, S S Luo et al. PLoS One, 2014, 9(4):e94685. 

    33. [33]

      R Jijie, K Kahlouche, A Barras et al. Sens. Actuat. B, 2018, 260:255~263. 

    34. [34]

       

    35. [35]

      K Navakul, C Warakulwit, P Yenchitsomanus et al. Nanomed.:Nanotechnol. Biol. Med., 2017, 13(2):549~557. 

    36. [36]

      C M Pandey, I Tiwari, V N Singh et al. Sens. Actuat. B, 2017, 238:1060~1069. 

    37. [37]

      T Ohno, S Samukawa. Appl. Phys. Lett., 2015, 106(17):173110. 

    38. [38]

       

    39. [39]

      J Han, D Y Lee, C H C Chew et al. Sens. Actuat. B, 2016, 228:36~42. 

    40. [40]

      F Tan, P H M Leung, Z B Liu et al. Sens. Actuat. B, 2011, 159(1):328~335. 

    41. [41]

      K Y Chan, W W Ye, Y Zhang et al. Biosens. Bioelectron., 2013, 41:532~537. 

    42. [42]

      Cheng P, Huang Z G, Zhuang Y et al. Sens. Actuat. B, 2014, 204:561~567. 

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    12. [12]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    13. [13]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    14. [14]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    19. [19]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(10)
  • Abstract views(692)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return