Citation: GONG Ming-yue, LI Xiao-juan, ZHANG Mei, SONG Hua, HE Ying-ming. Preparation of ionic liquid supported metal-organic framework Py/MOF-199 and its adsorption desulfurization performance[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1175-1183. shu

Preparation of ionic liquid supported metal-organic framework Py/MOF-199 and its adsorption desulfurization performance

  • Corresponding author: SONG Hua, songhua2004@sina.com
  • Received Date: 8 May 2018
    Revised Date: 2 August 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21276048), the Natural Science Foundation of Heilongjiang Province of China (ZD201201) and the General Program of Education Department of Heilongjiang Province (12541060)the National Natural Science Foundation of China 21276048the Natural Science Foundation of Heilongjiang Province of China ZD201201the General Program of Education Department of Heilongjiang Province 12541060

Figures(13)

  • MOF-199(Cu-BTC) was prepared and the ionic liquid supported MOF-199 adsorbents (Py/MOF-199) were successfully obtained via fixing ionic liquid[Hnmp] [H2PO4] onto the MOF-199. Adsorbents were characterized via XRD, FT-IR, SEM, and BET methods. The effects of pretreatment conditions of MOF-199, ionic liquid loading method, ionic liquid content, loading temperature and time on adsorptive removal performance of thiophene were studied. The preparation conditions of Py/MOF-199 adsorbent were optimized via orthogonal experiment, and the desulfurization conditions were also optimized. The results show that after the introduction of[Hnmp] [H2PO4] the regular octahedron structure of MOF-199 of Py/MOF-199 was maintained unchanged and the average pore diameter was increased. The optimal preparation conditions of Py/MOF-199 adsorbent are pretreating MOF-199 with Soxhlet extraction and drying in vacuum, then loading[Hnmp] [H2PO4] using solvothermal method, loading temperature of 50 ℃, loading time of 8 h, ionic liquid content of 7%. The influence of preparation factors on the desulfurization performance of adsorbent is in order:loading temperature > loading time > ionic liquid content. The optimal desulfurization conditions are model oil of 10 mL, Py/MOF-199 dosage of 0.2 g, adsorption under 70 ℃ for 1 h. Under these conditions, the thiophene desulfurization rate over Py/MOF-199 reached 96.7%.
  • 加载中
    1. [1]

      CHEN X C, SONG D D, ASUMANA C, YU G R. Deep oxidative desulfurization of diesel fuels by lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride[J]. J Mol Catal A:Chem, 2012,359:8-13. doi: 10.1016/j.molcata.2012.03.014

    2. [2]

      ULLAH R, BAI P, WU P, LIU B, SUBHAN F, YAN Z. Cation-anion double hydrolysis derived mesoporous mixed oxides for reactive adsorption desulfurization[J]. Microporous Mesoporous Mater, 2017,238:36-45. doi: 10.1016/j.micromeso.2016.02.037

    3. [3]

      YANG C P, ZHAO K, CHEN Y, ZENG G M, ZHANG M M, SHAO J J, LU L. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve[J]. Sep Purif Technol, 2016,163:153-161. doi: 10.1016/j.seppur.2016.02.050

    4. [4]

      LEE K X, VALLA J A. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels[J]. Appl Catal B:Environ, 2017,201:359-369. doi: 10.1016/j.apcatb.2016.08.018

    5. [5]

      LENG K Y, SUN Y Y, ZHANG X, YU M, XU W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene[J]. Fuel, 2016,174:9-16. doi: 10.1016/j.fuel.2016.01.070

    6. [6]

      YANG Q Y, LIU D H, ZHONG C L, LI J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem Rev, 2013,113(10):8261-8323. doi: 10.1021/cr400005f

    7. [7]

      WU H H, GONG Q H, OLSON D H, LI J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J]. Chem Rev, 2012,112(2):836-868. doi: 10.1021/cr200216x

    8. [8]

      DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chem Rev, 2014,114(11):5695-5727. doi: 10.1021/cr4006473

    9. [9]

      SUN W, LIN L C, PENG X, SMIT B. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases[J]. AIChE J, 2014,60(6):2314-2323. doi: 10.1002/aic.14467

    10. [10]

      ACHMANN S, HAGEN G, HAMMERLE M, MALKOWSKY I, KIENER C, MOOS R. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks[J]. Fuel Process Technol, 2010,33(2):275-280.  

    11. [11]

      TAN P, XIE X Y, LIU X Q, PAN T, GU C, CHEN P F, ZHOU J Y, PAN Y C, SUN L B. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. J Hazard Mater, 2017,321:344-352. doi: 10.1016/j.jhazmat.2016.09.026

    12. [12]

      SZANYI J, DATURI M, CLET G, BAER D R, PEDEN C H F. Well-studied Cu-BTC still serves surprises:Evidence for facile Cu2+/Cu+ interchange[J]. Phys Chem Chem Phys, 2012,14(13):4383-4390. doi: 10.1039/c2cp23708c

    13. [13]

      WU L M, XIAO J, WU Y, XIAN S K, MIAO G, WANG H H, LI Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014,30(4):1080-1088. doi: 10.1021/la404540j

    14. [14]

      WANG Jun-feng, ZHANG Suo-jiang, CHEN Hui-ping, LI Xian, ZHANG Mi-lin. Properties of ionic liquids and its applications in catalytic reactions[J]. Chin J Process Eng, 2003,3(2):177-185. doi: 10.3321/j.issn:1009-606X.2003.02.016

    15. [15]

      BABUCCI M, FANG C Y, HOFFMAN A S, BARE S R, GATES B C, UZUN A. Tuning the selectivity of single-site supported metal catalysts with ionic liquids[J]. ACS Catal, 2017,7(10):6969-6972. doi: 10.1021/acscatal.7b02429

    16. [16]

      KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks:Remarkable adsorbents for adsorptive desulfurization[J]. Chem Eur J, 2014,20(2):376-380. doi: 10.1002/chem.v20.2

    17. [17]

      BORFECCHIA E, MAURELLI S, GIANOLIIO D, GROPPO E, CHIESA M, BONINO F, LAMBERTI C. Insights into adsorption of NH3 on HKUST-1 metal-organic framework:A multitechnique approach[J]. J Phys Chem C, 2012,116(37):19839-19850. doi: 10.1021/jp305756k

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    15. [15]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    16. [16]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    17. [17]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    20. [20]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(11)
  • Abstract views(653)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return