Citation: WANG Xiao-liu, YANG Meng, ZHU Ling-jun, ZHU Xiao-nan, WANG Shu-rong. CO2 methanation over Ni/Mg@MCM-41 prepared by in-situ synthesis method[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 456-465. shu

CO2 methanation over Ni/Mg@MCM-41 prepared by in-situ synthesis method

  • Corresponding author: WANG Shu-rong, srwang@zju.edu.cn
  • Received Date: 17 January 2020
    Revised Date: 8 March 2020

    Fund Project: The project was supported by the National Science Fund for Distinguished Young Scholars (51725603)the National Science Fund for Distinguished Young Scholars 51725603

Figures(8)

  • A series of xMg@MCM-41(x=0, 0.05, 0.1) functional mesoporous materials were synthesized by a novel in-situ one pot method and then were used as support for Ni based catalysts. The results of XRD and TEM show that when the amount of Mg/Si (molar ratio) is 0.05, Mg@MCM-4 with a regular and ordered mesoporous structure is synthesized where Mg is introduced into the framework of MCM-41. Introducing Mg into the framework of the support can significantly enhance the basic properties of the catalyst, thus promoting the adsorption and activation of CO2. The catalysts prepared in the experiments all have good thermal stability and catalytic activity. Among them, Ni/0.05Mg@MCM-41 shows the best low temperature reaction activity in the CO2 methanation reaction.
  • 加载中
    1. [1]

      SONG Q, ZHOU Z, HE L. Efficient, selective and sustainable catalysis of carbon dioxide[J]. Green Chem, 2017,19(16):3707-3728. doi: 10.1039/C7GC00199A

    2. [2]

      FRONTERA P, MACARIO A, FERRARO M, ANTONUCCI P. Supported catalysts for CO2 methanation:A review[J]. Catalysts, 2017,7(2).

    3. [3]

      BAILERA M, LISBONA P, ROMEO L M, ESPATOLERO S. Power to gas projects review:Lab, pilot and demo plants for storing renewable energy and CO2[J]. Renewable Sustainable Energy Rev, 2017,69:292-312. doi: 10.1016/j.rser.2016.11.130

    4. [4]

      CHEN J, WANG M, WANG S, LI X. Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts[J]. Int J Hydrogen Energy, 2018,4(39):18160-18168.  

    5. [5]

      AZIZ M A A, JALIL A A, TRIWAHYONO S, SAAD M W A. CO2 methanation over Ni-promoted mesostructured silica nanoparticles:Influence of Ni loading and water vapor on activity and response surface methodology studies[J]. Chem Eng J, 2015,260:757-764. doi: 10.1016/j.cej.2014.09.031

    6. [6]

      ZHU L, YIN S, YIN Q, WANG H, WANG S. Biochar:A new promising catalyst support using methanation as a probe reaction[J]. Energy Sci Eng, 2015,3(2):126-134.  

    7. [7]

      LI W, WANG H, JIANG X, ZHU J, LIU Z, GUO X, SONG C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. Rsc Adv, 2018,8(14):7651-7669. doi: 10.1039/C7RA13546G

    8. [8]

      YIN S, ZHU L, LIU Y, WANG S. The effect of titanium source on methanation over Ni/TiO2 catalysts[J]. Chem Res Chin Univ, 2017,34(2).

    9. [9]

      LEE G D, MOON M J, PARK J H, PARK S S, HONG S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity[J]. Korean J Chem Eng, 2005,22(4):541-546.

    10. [10]

      BAYSAL Z, KURETI S. CO2 methanation on Mg-promoted Fe catalysts[J]. Appl Catal B:Environ, 2020,262118300. doi: 10.1016/j.apcatb.2019.118300

    11. [11]

      ALI S H, GIURCO D, ARNDT N, NICKLESS E, BROWN G, DEMETRIADES A, DURRHEIM R, ENRIQUEZ M A, KINNAIRD J, LITTLEBOY A, MEINERT L D, OBERHÄNSLI R, SALEM J, SCHODDE R, SCHNEIDER G, VIDAL O, YAKOVLEVA N. Mineral supply for sustainable development requires resource governance[J]. Nature, 2017,543(7645):367-372. doi: 10.1038/nature21359

    12. [12]

      AZIZ M A A, JALIL A A, TRIWAHYONO S, AHMAD A. CO2 methanation over heterogeneous catalysts:Recent progress and future prospects[J]. Green Chem, 2015,17(5):2647-2663. doi: 10.1039/C5GC00119F

    13. [13]

      WANG W, GONG J. Methanation of carbon dioxide:An overview[J]. Front Chem Sci Eng, 2011,5(1):2-10. doi: 10.1007/s11705-010-0528-3

    14. [14]

      ZHAO D, SUN J, LI Q, STUCKY G D. Morphological control of highly ordered mesoporous silica SBA-15[J]. Chem Mater, 2000,12(2):275-279.  

    15. [15]

      BECK J S, VARTULI J C, ROTH W J, LEONOWICZ M E, KRESGE C T, SCHMITT K D, CHU C T W, OLSON D H, SHEPPARD E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992,114(27):10834-10843. doi: 10.1021/ja00053a020

    16. [16]

      BACARIZA M C, GRACA I, BEBIANO S S, LOPES J M, HENRIQUES C. Micro- and mesoporous supports for CO2 methanation catalysts:A comparison between SBA-15, MCM-41 and USY zeolite[J]. Chem Eng Sci, 2018,175:72-83. doi: 10.1016/j.ces.2017.09.027

    17. [17]

      ZHANG Jia-ying, XIN Zhong, MENG Xin, TAO Miao. Activity and stability of nickel based MCM-41 methanation catalysts for production of synthetic natural gas[J]. CIESC J, 2014,65(1):160-168. doi: 10.3969/j.issn.0438-1157.2014.01.020

    18. [18]

      TAN J, WANG J, ZHANG Z, MA Z, WANG L, LIU Y. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Appl Surf Sci, 2019,481:1538-1548. doi: 10.1016/j.apsusc.2019.03.217

    19. [19]

      ZENG Yan, MA Hong-fang, ZHANG Hai-tao, YING Wei-yong, FANG Ding-ye. Ni-based methanation catalysts prepared by solution combustion method:Effect of Mg, Mn and La promoters[J]. Nat Gas Ind, 2015,40(4):6-10. doi: 10.3969/j.issn.1001-9219.2015.04.002

    20. [20]

      BACARIZA M C, GRACA I, BEBIANO S S, LOPES J M, HENRIQUES C. Magnesium as promoter of CO2 methanation on Ni-Based USY zeolites[J]. Energy Fuels, 2017,31(9):9776-9789. doi: 10.1021/acs.energyfuels.7b01553

    21. [21]

      XU L, WANG F, CHEN M, YANG H, NIE D, QI L, LIAN X. Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation[J]. Rsc Adv, 2017,7(30):18199-18210. doi: 10.1039/C7RA01673E

    22. [22]

      WANG X, ZHU L, ZHUO Y, ZHU Y, WANG S. Enhancement of CO2 methanation over La-Modified Ni/SBA-15 catalysts prepared by different doping methods[J]. ACS Sustainable Chem Eng, 2019,7:14647-14660. doi: 10.1021/acssuschemeng.9b02563

    23. [23]

      WANG X, ZHU L, LIU Y, WANG S. CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2[J]. Sci Total Environ, 2018,625:686-695. doi: 10.1016/j.scitotenv.2017.12.308

    24. [24]

      LIU Y, ZHU L, WANG S, FUKUDA S. Bio-MCM-41:A high-performance catalyst support derived from pyrolytic biochar[J]. New J Chem, 2018,42(15):12394-12402. doi: 10.1039/C8NJ01063C

    25. [25]

      WANG X, LIU Y, ZHU L, LI Y, WANG K, QIU K, TIPPAYAWONG N, AGGARANGSI P, REUBROYCHAROEN P, WANG S. Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation[J]. J CO2 Util, 2019,34:733-741. doi: 10.1016/j.jcou.2019.09.003

    26. [26]

      HONG Xin, TANG Ke. Preparation of heteroatomic mesoporous Ce-MCM-41 molecular sieve and its performance in the adsorptive removal of dimethyl sulfide[J]. J Fuel Chem Technol, 2015,43(4):456-461. doi: 10.3969/j.issn.0253-2409.2015.04.013 

    27. [27]

      JIA W, LIU T, LI Q, YANG J. Highly efficient photocatalytic reduction of CO2 on surface-modified Ti-MCM-41 zeolite[J]. Catal Today, 2019,335:221-227. doi: 10.1016/j.cattod.2018.11.046

    28. [28]

      MARLER B, OBERHAGEMANN U, VORTMANN S, GIES H. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41[J]. Microporous Mater, 1996,6(5/6):375-383.  

    29. [29]

      SONG X, GUAN Q, SHU Y, ZHANG X, LI W. Facile in-situ encapsulation of highly dispersed Ni@MCM-41 for the trans-decalin production from hydrogenation of naphthalene at low temperature[J]. ChemCatChem, 2019,11(4):1286-1294. doi: 10.1002/cctc.201801788

    30. [30]

      HAMMOND W, PROUZET E, MAHANTI S D, PINNAVAIA T J. Structure factor for the periodic walls of mesoporous MCM-41 molecular sieves[J]. Microporous Mesoporous Mater, 1999,27(1):19-25. doi: 10.1016/S1387-1811(98)00222-4

    31. [31]

      ZHANG M, LIU Z, LIN G, ZHANG H. Pd/CNT-promoted CuZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2[J]. Appl Catal A:Gen, 2013,451:28-35. doi: 10.1016/j.apcata.2012.10.038

    32. [32]

      ZHANG Xu, SUN Wen-jing, CHU Wei. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation[J]. J Fuel Chem Technol, 2013,41(1):96-101. doi: 10.3969/j.issn.0253-2409.2013.01.016

    33. [33]

      SONG J, SUN Y, BA R, HUANG S, ZHAO Y, ZHANG J, SUN Y, ZHU Y. Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons[J]. Nanoscale, 2015,7(6):2260-2264. doi: 10.1039/C4NR06660J

    34. [34]

      OCAMPO F, LOUIS B, KIWI-MINSKER L, ROGER A-C. Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation[J]. Appl Catal A:Gen, 2011,392(1):36-44.

    35. [35]

      ZHU Qiu-jun, WANG Hai-yang, LI Zhen-hua. Study on methanation of carbon monoxide over nickel-based catalysts[J]. Nat Gas Ind, 2012,37(2):17-20. doi: 10.3969/j.issn.1001-9219.2012.02.004

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    7. [7]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

Metrics
  • PDF Downloads(10)
  • Abstract views(1122)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return