Citation: Yuan Yanglei, Chen Xin, Wang Hongmei, Chen Qing. Progress in Coordination-Based Fluorescent Probes for Palladium Ion[J]. Chemistry, ;2019, 82(8): 696-705. shu

Progress in Coordination-Based Fluorescent Probes for Palladium Ion

  • Corresponding author: Wang Hongmei, whmd@cau.edu.cn
  • Received Date: 20 March 2019
    Accepted Date: 26 April 2019

Figures(2)

  • Palladium is widely used in industrial and medicial areas, but the residual Pd2+ has a great harm to human health and environment. In recent years, more and more attention have been paid to sensitive detection of residual Pd2+. Among them, coordination-based fluorescent probes are one of the most convenient and rapid detection methods for detecting Pd2+. In this paper, according to the coordination modes, coordination-based fluorescent probes including the coordination through N group elements (such as N、P), O group elements (such as O, S, Se), N group elements and O group elements, unsaturated bond and even polymers are reviewed. Through analyzing coordination modes, fluorescent probe structure, and detection efficiency, the review could provide a clue to further design more sensitive and efficient fluorescent probes for Pd2+ detection.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

      K H Thompson, C Orvig. Science, 2003, 300(5621):936~939. 

    4. [4]

       

    5. [5]

      International Programme on Chemical Safety. Palladium, Environmental Health Criteria Series 226, WHO, Geneva 2002.

    6. [6]

      H Li, J Fan, X Peng. Chem. Soc. Rev., 2013, 42(19):7943~7962. 

    7. [7]

      L F Tietze, H Ila, H P Bell. Chem. Rev., 2004, 104:3453~3516. 

    8. [8]

      G Zeni, R C Larock. Chem. Rev., 2004, 104:2285~2310. 

    9. [9]

      J Kielhorn, C Melber, D Keller et al. Int. J. Hyg. Envir. Heal., 2002, 205:417~432. 

    10. [10]

      M L A Castillo, A G de Torres, E V Alonso et al. Talanta, 2012, 99:853~858. 

    11. [11]

      Q A Best, R Xu, M E McCarroll et al. Org. Lett., 2010, 12(14):3219~3221. 

    12. [12]

      K Sreenath, R J Clark, L Zhu. J. Org. Chem., 2012, 77:8268~8279. 

    13. [13]

      Y H Lee, M H Lee, J F Zhang et al. J. Org. Chem., 2010, 75(21):7159~7165. 

    14. [14]

      Y Gong, X Zhang, C Zhang et al. Anal. Chem., 2012, 84:10777~10784. 

    15. [15]

      A B Othman, J W Lee, J S Wu et al. J. Org. Chem., 2007, 72:7634~7640. 

    16. [16]

      B K Pal, M S Rahman. Microchim. Acta, 1999, 131:139~144. 

    17. [17]

      Y Fan, H Chen, Z Gao et al. Indian J. Chem., 2002, 41:521~524.

    18. [18]

      S Goswami, D Sen, N K Das et al. Chem. Commun., 2011, 47(32):9101~9103. 

    19. [19]

      S Cai, Y Lu, S He et al. Chem. Commun., 2013, 49(8):822~824. 

    20. [20]

      S Sun, B Qiao, N Jiang et al. Org. Lett., 2014, 16(4):1132~1135. 

    21. [21]

      H Wang, Y Lang, H Wang et al. Tetrahedron, 2014, 70(11):1997~2002. 

    22. [22]

      J Li, H Wang, H Wang et al. Eur. J. Org. Chem., 2014, 2014(11):2225~2230. 

    23. [23]

      A Kumar, M Chhatwal, A K Singh et al. Chem. Commun., 2014, 50(62):8488~8490. 

    24. [24]

      M Wang, Y Yang, H Wang et al. Analyst, 2016, 141:832~835. 

    25. [25]

      Y Li, L Yang, M Du et al. Analyst, 2019, 144:1260~1264. 

    26. [26]

      H K Y Lau, P Lott. Talanta, 1970, 17:717~727. 

    27. [27]

      H Li, J Fan, F Song et al. Chem. Eur. J., 2010, 16(41):12349~12356. 

    28. [28]

      K Kubo, Y Miyazaki, K Akustu et al. Heterocycles, 1999, 51(5):965~968. 

    29. [29]

      T Schwarze, H Müller, C Dosche et al. Angew. Chem. Int. Ed., 2007, 46(10):1671~1674. 

    30. [30]

      T Schwarze, W Mickler, C Dosche et al. Chem. Eur. J., 2010, 16(6):1819~1825. 

    31. [31]

      T Schwarze, C Dosche, R Flehr et al. Chem. Commun., 2010, 46(12):2034~2036. 

    32. [32]

      H Kim, K Moon, S Shim et al. Chem. Asian J., 2011, 6(8):1987~1991. 

    33. [33]

      Y Zhou, J Zhang, H Zhou et al. Sens. Actuat. B, 2012, 171~172:508~514.

    34. [34]

      J Zhang, L Zhang, Y Zhou et al. Microchim. Acta, 2013, 180(3~4):211~217. 

    35. [35]

      H Li, J Cao, H Zhu et al. Tetrahed. Lett., 2013, 54(33):4357~4361. 

    36. [36]

      B Qiao, S Sun, N Jiang et al. Dalton Transac., 2014, 43(12):4626~4630. 

    37. [37]

      Q Huang, Y Zhou, Q Zhang et al. Sens. Actuat. B, 2015, 208:22~29. 

    38. [38]

      M Yang, Y Bai, W Meng et al. Inorg. Chem. Commun., 2014, 46:310~314. 

    39. [39]

      L Zhou, Q Wang, X Zhang et al. Anal. Chem., 2015, 87(8):4503~4507. 

    40. [40]

      H Li, J Fan, M Hu et al. Chem. Eur. J., 2012, 18(39):12242~12250. 

    41. [41]

      A Tamayo, L Escriche, J Casabó et al. Eur. J. Inorg. Chem., 2006, 2006(15):2997~3004. 

    42. [42]

      P Kaur, N Kaur, M Kaur et al. RSC Adv., 2014, 4(31):16104~16108. 

    43. [43]

      M Wang, X Liu, H Lu et al. ACS Appl. Mater. Interf., 2015, 7(2):1284~1289. 

    44. [44]

      D Huang, M Zhao, X Lv et al. Analyst, 2018, 143(2):511~518. 

    45. [45]

      X Chen, M Wang, X Ma et al. Dyes Pigm., 2017, 148:286~291.

    46. [46]

      A Y Mironenko, M V Tutov, A A Sergeev et al. Sens. Actuat. B, 2017, 246:389~394. 

    47. [47]

      L Duan, Y Xu, X Qian. Chem. Commun., 2008(47):6339~6341. 

    48. [48]

      H Li, J Fan, J Du et al. Chem. Commun., 2010, 46(7):1079~1081. 

    49. [49]

      J Cui, D Li, S Shen et al. RSC Adv., 2015, 5(5):3875~3880. 

    50. [50]

      L Wang, M Ren, Z Li et al. New J. Chem., 2019, 43:552~555. 

    51. [51]

      H Huang, K Wang, W Tan et al. Angew. Chem. Int. Ed., 2004, 43(42):5635~5638. 

    52. [52]

      B Liu, Y Bao, F Du et al. Chem. Commun., 2011, 47(6):1731~1733. 

    53. [53]

      B Liu, Y Bao, H Wang et al. J. Mater. Chem., 2012, 22(8):3555~3561. 

    54. [54]

      G Zhang, Y Wen, C Guo et al. Anal. Chim. Acta, 2013, 805:87~94. 

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    6. [6]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    7. [7]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    14. [14]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

Metrics
  • PDF Downloads(12)
  • Abstract views(1234)
  • HTML views(318)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return