Citation: YAN Dong-jie, LI Ya-jing, YU Ya, HUANG Xue-min, ZHOU Wei-ke, LIU Ying-hui. Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1513-1519. shu

Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature

  • Corresponding author: YAN Dong-jie, yandongjie_2000@163.com
  • Received Date: 15 June 2018
    Revised Date: 4 September 2018

    Fund Project: Scientific Research Plan Projects of Educational Department of ShaanXi Province 17JK0465the Natural Science Foundation of Shaanxi Province 2016JQ5095The project was supported by the Natural Science Foundation of Shaanxi Province (2016JQ5095) and Scientific Research Plan Projects of Educational Department of ShaanXi Province (17JK0465)

Figures(11)

  • A manganese and cerium oxide catalyst was prepared through sol-gel method. Effects of the concentration and type of alkali metals on performance of the Mn-Ce/TiO2 catalysts were investigated in selective catalytic reduction of NO with NH3. The cause of the alkali metal poisoning of the catalyst was studied and the influence of sodium salt deposition on the activity retention fraction under different reaction conditions was further studied. The catalysts were characterized by scanning electron microscope (SEM), BET surface area, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), respectively. The results show that alkali metals exhibited an inhibiting effect on the selective catalytic reduction (SCR), and the deactivation rate of Mn-Ce/TiO2 catalyst caused by potassium poisoning was higher than that by sodium poisoning. The NO conversion was decreased from 91.2% to 62.0% at a temperature of 160℃, when the potassium content was 2%. This is mainly because the presence of the alkali metal resulted in a reduction of the specific surface area of the catalyst, and the specific surface area of the potassium poisoning of the catalyst was reduced by 34.2%. The alkali metal poisoning could cause blockage of the micropores on the surface and the transfer from anatase to rutile phase of the catalyst. The effect of alkali metal on the retention fraction of the Mn-Ce/TiO2 catalyst indicates that the particle size of the catalyst had slight effect on its activity retention fraction. The selective catalytic reduction (SCR) activity of the Mn-Ce/TiO2 catalyst increased along with the temperature. While the content of alkali metal decreased, the retention rate of active metal increased. The inhibitory effect of Na2SO4 and NaCl on the denitrification activity of Mn-Ce/TiO2 catalyst was more significant than that of NaNO3.
  • 加载中
    1. [1]

      HAO Ji-ming, MA Guang-da, WANG Shu-xiao. Air Pollution Control Engineering(Third Edition)[M]. Beijing:Higher Education Press, 2010:378.

    2. [2]

      DU X S, YANG G P, CHEN Y R, RAN JY, ZHANG L. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst[J]. Appl Surf Sci, 2017,392:162-168. doi: 10.1016/j.apsusc.2016.09.036

    3. [3]

      CIMINO S, LISI L, TORTORLLI M. Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning:Effect of KCl poisoning[J]. Chem Eng J, 2016,283:223-230. doi: 10.1016/j.cej.2015.07.033

    4. [4]

      CHEN Yi-fan. Effects of alkali metals on the denitration behavior of vanadium-titanium catalysts[D]. Beijing: Beijing University of Chemical Technology, 2013. 

    5. [5]

      HAN Bin. Effects of alkali metals on denitrification activity of catalysts and their intrinsic kinetics[D]. Beijing: Beijing University of Chemical Technology, 2013. 

    6. [6]

      KLING A, ANDERSSON C, MYRINGER A, ESKILSSON D, JÄRÃS S G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition[J]. Appl Catal B:Environ, 2007,69(3/4):240-251.  

    7. [7]

      ZHENG Y J, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Appl Catal B:Environ, 2005,60(3/4):253-264.

    8. [8]

      JIANG Y, ZHANG Y X, WU W H, GAO X. Kinetic study on potassium poisoning of V2O5/TiO2 catalysts for selective catalytic reduction of NO in flue gas[J]. Proc CSEE, 2014,34(23):3899-3906.  

    9. [9]

      CHEN J P, YANG R T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3[J]. J Catal, 1990,125(2):411-420. doi: 10.1016/0021-9517(90)90314-A

    10. [10]

      SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. J Fuel Chem Technol, 2010,38(1):85-91. doi: 10.3969/j.issn.0253-2409.2010.01.016 

    11. [11]

      WANG Shun. Preparation and photoelectrocatalytic performance of activated carbon supported titania catalyst[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. 

    12. [12]

      HUANG Ji-hui, TONG Hua, TONG Zhi-quan, ZHANG Jun-feng, HUANG Yan. Effect of H2O and SO2 on Mn-Fe/MPS catalysts for NO reduction by NH3 at low temperature[J]. Chin J Process Eng, 2008,8(16):517-522.  

    13. [13]

      CENTENO M A, CARRZOSA I, ODRIOZOIA J A. NO-NH3 coad sorption on vanadia/titania catalysts:Determination of the reduction degree of vanadium[J]. Appl Catal B:Environ, 2001,29(4):307-314. doi: 10.1016/S0926-3373(00)00214-9

    14. [14]

      ZHENG Zhu-hong. Low temperature catalytic treatment of NOx with Mn-V-Ce/TiO2 and its anti-toxicity performance[D]. Xiangtan: Xiangtan University, 2009. 

    15. [15]

      GASIOR M, HABER J, MACHEJ T, CZEPPE T. Mechanism of the reaction NO+NH3 on V5O2 catalysts[J]. J Mol Catal, 1988,43(3):359-369. doi: 10.1016/0304-5102(88)85147-2

    16. [16]

      TOPSØE N Y, TOPSØE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia:Ⅰ. Combined temperature-programmed in-situ, ftir and on-line mass-spectroscopy studies[J]. J Catal, 1995,151(1):226-240. doi: 10.1006/jcat.1995.1024

    17. [17]

      TOPSØE N Y. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR[J]. J Catal, 1991,128(2):499-511. doi: 10.1016/0021-9517(91)90307-P

    18. [18]

      ZHENG Y, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Appl Catal B:Environ, 2005,60(3/4):253-264.  

    19. [19]

      KRÖCHER O, ELSENER M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution Ⅰ.Catalytic studies[J]. Appl Catal B:Environ, 2008,77(3/4):215-2227.  

    20. [20]

      CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011,170(2/3):531-537.  

    21. [21]

      JIANG Ye. Titanium-based SCR catalyst and its mechanism of potassium and lead poisoning[D]. Hangzhou: Zhejiang University, 2010. 

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    4. [4]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    5. [5]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    8. [8]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    11. [11]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    20. [20]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

Metrics
  • PDF Downloads(8)
  • Abstract views(789)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return