Citation: GUO Shuai, HUO Xiao-dong, SONG Shuang-shuang, JIANG Yun-feng, ZHAO Jian-tao, FANG Yi-tian. Occurrence modes of sodium species in sodium-rich coals[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1172-1177. shu

Occurrence modes of sodium species in sodium-rich coals

  • Corresponding author: ZHAO Jian-tao, zhaojt@sxicc.an.cn
  • Received Date: 16 June 2017
    Revised Date: 25 July 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21576276, 21506241) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07050100)the National Natural Science Foundation of China 21506241the National Natural Science Foundation of China 21576276Strategic Priority Research Program of the Chinese Academy of Sciences XDA07050100

Figures(7)

  • The occurrence modes of sodium species and corresponding content distributions in sodium-rich coals were investigated through a series of analytical methods. The results indicate that for the vast majority of coals sodium are mainly in the form of water-soluble form, then organic form, and the content of insoluble form is negligible. Among them, the water-soluble sodium is mainly presented as nitratine (NaNO3), halite (NaCl) and hydrated ion (Na·xH2O). The organic sodium is mainly presented as carboxyl sodium (-COONa), while the insoluble sodium mainly occurs as albite (NaAlSi3O8).
  • 加载中
    1. [1]

      BAI Xiang-fei, WANG Yue, DING Hua, ZHU Chuan, ZHANG Yu-hong. Modes of occurrence of sodium in Zhundong coal[J]. J China Coal Soc, 2015,40(12):2909-2915.  

    2. [2]

      LI C Z, SATHE C, KERSHAW J R, PANG Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000,79(3):427-438.  

    3. [3]

      DAHLIN R S, WANWANG PENG, MATT NELSON, PANNALAL VIMALCHAND A, LIU G. Formation and Prevention of Agglomerated Deposits During the Gasification of High-Sodium Lignite[J]. Energy Fuels, 2006,20(6):2465-2470. doi: 10.1021/ef0602269

    4. [4]

      ZHOU J, ZHUANG X, ALASTUEY A, QUEROL X, LI J. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. Int J Coal Geology, 2010,82(1/2):51-67.  

    5. [5]

      GUO Shuai, JIANG Yun-feng, XIONG Qing-an, SONG Shuang-shuang, ZHAO Jian-tao, FANG Yi-tian. Release and transformation behaviors of sodium species with different occurrence modes during pyrolysis of Zhundong coal[J]. J Fuel Chem Technol, 2017,45(3):257-264.  

    6. [6]

      QI Xiao-bin, SONG Guo-liang, SONG Wei-jian. Transformation and migration of alkali metal with different occurrence of Zhundong high-alkali coal during gasification[J]. J China Coal Soc, 2016,41(4):1011-1017.  

    7. [7]

      ZHAO Bing, WANG Jia-rui, CHEN Fan-min, WANG Xiao-yue, LI Xiao-jiang. Hydrothermal treatment to remove sodium from high sodium coal and its influence on combustion characteristics[J]. J Fuel Chem Technol, 2014,42(12):1416-1422.  

    8. [8]

      SONG G, SONG W, QI X, LU Q. Transformation characteristics of sodium of Zhundong coal combustion/gasification in circulating fluidized bed[J]. Energy Fuels, 2016,30(4):3473-3478. doi: 10.1021/acs.energyfuels.6b00028

    9. [9]

      LIU Jiang, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Mode of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    10. [10]

      LIN Xiong-chao, YANG Yuan-ping, XU Rong-sheng, LI Shou-yi, YUE Wen-fei, WANG Yong-gang. Occurrence and transformation behavior of AAEMs in the flotation fraction of a typical Xinjiang coal[J]. J Fuel Chem Technol, 2017,45(2):157-164.  

    11. [11]

      WENG Qing-song, WANG Chang-an, CHE De-fu, FU Zi-wen. Alkali metal occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. J Combust Sci Technol, 2014,20(3):216-221.  

    12. [12]

      WANG Zhi-hua, LI Qian, LIU Jing, HUANG Zhen-yu, ZHOU Zhi-jun, ZHOU Jun-hu, CEN Ke-fa. Occurrence of alkali metals in Zhundong coal and its migration during pyrolysis process[J]. Proc CSEE, 2014,40(s1):130-135.  

    13. [13]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013, 41(7):832-838.

    14. [14]

      YANG Shao-bo, SONG Guo-liang, SONG wei-jian, QI Xiao-bin. Transformation and deposition characteristics of sodium in Zhundong high sodium coal under different reaction atmospheres[J]. J Fuel Chem Technol, 2016,44(9):1051-1058.  

    15. [15]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc, 2016,41(2):490-496.  

    16. [16]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LÜ Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of Combustion Utilization of High Sodium Coal[J]. Proc CSEE, 2013,33(5):1-12.  

    17. [17]

      QIN Kuang-zong, GUO Shao-hui, LIU Guan-yi. A home-made plasma oxidizer for low temperature ashing and its application in oil shale chemical analysis[J]. J Univ Petrol China, 1989,13(2):81-88.  

    18. [18]

      Ye Wei-hong. Development and application of a law temperature asher[J]. Coal Geol Explor, 1995,23(2):24-28.  

    19. [19]

      LIU Xin-bing. The mineral matter characteristics of some Chinese coals[J]. J China Univ Min Tech, 1994,23(4):109-114.  

    20. [20]

      SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Effect of pretreatment methods on the determination of alkali metal content in high alkali metal Zhundong coal[J]. J Fuel Chem Technol, 2016,44(2):162-167.  

    21. [21]

      DONG Ming-gang. Influence of high-sodium coal upon slagging, contamination, and corrosion on the heating surface of boilers[J]. Thermal Power Generation, 2008,37(9):35-39.  

    22. [22]

      HAN Chun-li, ZHANG Jun, LIU Kun-lei, XU Yi-qian. Modes of occurrence of sodium in coals[J]. J Fuel Chem Technol, 1999, 27(6):19-23.

    23. [23]

      FU Zi-wen, Wang Chang'an, WENG Qing-song, CHE De-fu. Experimental investigation for effect of water washing on Zhundong coal properties[J]. J Xi'an Jiaotong Univ, 2014,48(3):54-60.  

    24. [24]

      DAI S, REN D, ZHOU Y, CHOU C L, WANG X, ZHAO L, ZHU X. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China:Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chem Geol, 2008,255(1/2):182-194.  

    25. [25]

      QUYN D M, WU H, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002,81(2):143-149. doi: 10.1016/S0016-2361(01)00127-2

    26. [26]

      MARK H B, TIMOTHY C G, ROBERT G J. Ion Exchange in Selected Low Rank Coals. Part I:Equilibrium[J]. Sol Extrac Ion Exchange, 1983,1(4):791-811. doi: 10.1080/07366298308918429

    27. [27]

      LIU Z, HOEKMAN S K, BALASUBRAMANIAN R, ZHANG F-S. Improvement of fuel qualities of solid fuel biochars by washing treatment[J]. Fuel Process Technol, 2015,134:130-135. doi: 10.1016/j.fuproc.2015.01.025

  • 加载中
    1. [1]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    13. [13]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(3)
  • Abstract views(2539)
  • HTML views(411)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return