Synthesis, Crystal Structure and Herbicidal Activity of Pyridine Carboxamide Containing Diarylamine Group

Zihui Yang Wan Li Yuhua Wang Haixia Lu Linfeng Guo Ke Yang

Citation:  Yang Zihui, Li Wan, Wang Yuhua, Lu Haixia, Guo Linfeng, Yang Ke. Synthesis, Crystal Structure and Herbicidal Activity of Pyridine Carboxamide Containing Diarylamine Group[J]. Chemistry, 2020, 83(12): 1127-1132. shu

含二芳胺基的吡啶甲酰胺的合成、晶体结构与除草活性

    通讯作者: 杨科, yangyongyao168@sina.com
  • 基金项目:

    国家自然科学基金项目(81803761)、浙江工业大学青年英才支持计划项目(GY18034148004)和中国博士后科学基金项目(2019M652144)资助

    国家自然科学基金项目 81803761

    中国博士后科学基金项目 2019M652144

    浙江工业大学青年英才支持计划项目 GY18034148004

摘要: 通过三步反应合成了新化合物N-[2-(苯胺基)苯基]-2-甲氧基吡啶-3-甲酰胺(C19H17N3O2),其结构通过1H NMR、13C NMR和ESI-MS表征,晶体结构通过X-射线单晶衍射解析。其晶体属单斜晶系,空间群为P 1 21/n 1,晶胞参数为:a=10.6329(18)Å,b=13.026(2)Å,c=12.267(2)Å;Z=4,V=1669.7(5)Å3Mr=319.35,Dc=1.270 mg/m3S=1.027,F(000)=672,μ(Mo Kα)=0.085 mm-1。分子间存在氢键N(3)-H(3)…O(2)对晶体结构起到稳定的作用。初步除草活性试验表明,化合物在3000g a.i/hm2剂量时对稗草的茎叶处理抑制率为91.81%。

English

  • Pyridine derivatives have a variety of agrochemical applications such as herbicide, fungicide, insecticide and acaricide[1, 2]. Especially, pyridine carboxamide derivatives have attracted great attention since the first pyridine carboxamide fungicide boscalid was commercialized by BASF Company. This kind of compounds have been studied and reported widely. Li et al.[3]designed and synthesized a series of novel compounds containing oxazoline groups, which exhibited excellent fungicidal activities against Rhizoctonia solani in vitro. Ye et al.[4]synthesized a series of pyridine carboxamide compounds, which showed good inhibition against six fungi in vitro. Whereas, the herbicidal activity of pyridine carboxamide is rarely reported. In this paper, compound N-[2-(phenylamino) phenyl]-2-methoxyl pyridine carboxamide (3) was synthesized, and its structure was characterized by 1H NMR, 13C NMR, ESI-MS. Its crystal structure was determined by X-ray single-crystal diffraction analysis, and its herbicidal activity was investigated as well.

    All regeants and solvents were commercially available and used directly without further purification. The melting point was determined on X-4 melting point apparatus and the temperture was uncorrected. 1H NMR and 13C NMR spectra were obtained with CDCl3 as a solvent and tetrame-thylsilane as an internal standard by using a 400MHz Bruker NMR spectrometer (Bruker Co., Switzerland). MS data were obtained on a Thermo Scientific LCQ Fleet Ion Trap Mass Spectrometer. Thin-layer chromatography was performed on silica gel 60 F254 (Qingdao Marine Chemical Ltd., P. R. China). Column chromato-graphy purification was conducted on silica gel (200~300 mesh, Qingdao Marine Chemical Ltd., P. R. China). The synthetic route of compound 3 was described in Scheme 1.

    Scheme 1

    Scheme 1.  标题化合物N-[2-(苯胺基)苯基]-2甲氧基吡啶-3-甲酰胺(3)的合成路线
    Scheme 1.  Synthetic route of titled compound N-[2-(phenylamino) phenyl]-2-methoxyl pyridine carboxamide(3)

    Anhydrous K2CO3 (20 mmol) was added to a mixture of 1-chloro-2-nitrobenzene (20 mmol) and aniline (30 mmol) in PEG1000 (2 mmol), and the resulting mixture was heated at 180 ℃ for 13 h. The reaction mixture was cooled to room temperature and quenched with water, and then extracted with ethyl acetate (3×30 mL). The organic phase was washed with brine, dried with MgSO4, and concentrated under reduced pressure. The crude product was subjected to flash column chromatography to obtain intermediate 1. 1H NMR (400 MHz, CDCl3) δ: 9.49 (s, 1H), 8.20 (dd, J1=8.6Hz, J2=1.5Hz, 1H), 7.34~7.43 (m, 3H), 7.28 (s, 1H), 7.21~7.25(m, 3H), 6.74~6.78 (m, 1H).

    A mixture of intermediate 1 (15 mmol), reductive iron powder (15 mmol), NH4Cl (45 mmol), and aqueous ethanol solution (75%, 60.84 mL) was heated under reflux (90 ℃) for 5 h. Then the mixture was cooled to room temperature, filtered, and extracted with ethyl acetate (3×20 mL). The organic phase was evaporated in vacuo to obtain intermediate 2. 1H NMR (400 MHz, CDCl3) δ: 7.18~7.22 (m, 2H), 7.11 (dd, J1=7.8Hz, J2=1.4Hz, 1H), 6.99~7.03 (m, 1H), 6.77~6.83 (m, 2H), 6.71~6.75 (m, 3H), 5.17 (s, 1H), 3.75 (s, 2H).

    2-Methoxynicotinic acid (1.1 mmol) was dissolved in 3 mL of CH2Cl2 and cooled to 0 ℃, then EDCI (1.2 mmol) and HOBt (1.2 mmol) were added to the above mixture. Subsequently, intermediate 2 (1.0 mmol) was added while stirring the mixture. The mixture was stirred for several hours until the starting compound disappeared (TLC monitoring). Then the mixture was quenched with water and extracted with CH2Cl2 (2×2 mL). The combined CH2Cl2 phase was washed with brine (2×2 mL) and dried with Na2SO4. The solvent was removed in vacuo, and the crude product was purified through column chromatography (eluent, petroleum ether/ethyl acetate, V/V=10:1~4:1) to obtain compound 3 as a pink powder, yield 91%, m.p. 164.3~165.2 ℃. 1H NMR (400 MHz, CDCl3) δ: 10.34 (s, 1H, CONH), 8.55 (dd, J1 =7.6Hz, J2=2.0Hz, 1H, pyridine), 8.31 (dd, J1 =8.0Hz, J2=1.6Hz, 1H, pyridine), 8.23 (dd, J1 =4.8Hz, J2=2.0Hz, 1H, pyridine), 7.27 (d, J=1.5Hz, 1H, phenyl), 7.16~7.22 (m, 3H, phenyl), 7.10 (td, J1 =7.6Hz, J2=1.5Hz, 1H, phenyl), 7.01~7.05 (m, 1H, phenyl), 6.79~6.85 (m, 3H, phenyl), 5.74 (s, 1H, NH), 3.79 (s, 3H, OCH3). 13C NMR (101MHz, CDCl3) δ: 162.50, 160.67, 150.34, 145.96, 142.09, 134.15, 134.11, 133.66, 129.83, 125.83, 125.66, 125.10, 122.68, 122.64, 120.31, 118.27, 116.60, 116.02, 54.39. ESI-MS: m/z 320.14 [M+H]+.

    The CH2Cl2/CH3CH2OH solution of compound 3 was evaporated for 5 days to obtain a yellow single crystal with dimensions of 0.28×0.25×0.21mm. X-ray single crystal diffraction data was measured at 293(2) K on a Bruker AXS SMART 1000 CCD diffractometer equipped with a graphite-monochromatic Mo Kα (λ=0.71073 Å) radiation. Total 34623 reflections were collected in the range of 3.13° < θ < 27.62°, of which 3854 were independent (Rint=0.0387), and 3854 were considered to be observed (I>2σ(I)) and used in the succeeding refinement. Corrections for incident and empirical adsorption adjustment were applied with SADABS[5], and the structure was solved with SHELXS-97 program and expanded by difference fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were located at the theoretical positions[6, 7]. The structure was refined by full-matrix least-squares techniques on F2 with SHELXL-97. The final R=0.0535 and wR=0.1353 {w=1/[σ2(Fo2)+(0.068P)2+0.396P], where P=(Fo2+2Fc2)/3}, (Δ/σ)max < 0.001, S=1.027, (Δρ)max=0.361 and (Δρ)min =-0.410 e/Å3(in Tab. 1). CCDC: 1970632.

    Table 1

    表 1  化合物3的晶体结构数据
    Table 1.  Crystal data and structure refinements of compound 3
    下载: 导出CSV
    Compound 3
    Empirical formula C19 H17N3O2
    Formula weight 319.35
    Crystal system Monoclinic
    Space group P 1 21/n 1
    a 10.6329(18)
    b 13.026(2)
    c 12.267(2)
    V3 1669.7(5)
    Z, Calculated density(g/cm3) 4, 1.270
    Absorption coefficient/mm-1 0.085
    F(000) 672
    Crystal size(mm) 0.28×0.25 ×0.21
    θ/(°) 3.128~27.619
    Limiting indices -13≤h≤13, -16≤k≤16,
    -15≤l≤15
    Reflections collected/unique 34623/3854 [R(int)=0.0387]
    Data/restraints/parameters 3854/0/218
    Goodness-of-fit on F2 1.027
    Final R indices [I>2sigma(I)] R1=0.0535, wR2=0.1353
    R indices (all data) R1=0.0766, wR2=0.1500
    Largest diff. peak and hole 0.361 and -0.410 e·Å-3

    Compound 3 was obtained in high yield by a condensation reaction of pyridine carboxylic acid with the key intermediate N1-phenylbenzene-1, 2-diamine 2. The structure of the titled compound was characterized by 1H NMR, 13C NMR and ESI-MS. As for the 1H NMR data, the appearance of signals at δ 10.34 and δ 5.74 were assigned to the CONH proton and NH proton, respectively. The ESI-MS measured value (320.14 [M+H]+) of compound 3 was in good agreement with the theoretical value of 319.35.

    The compound was crystallized in the monoclinic space group P 1 21/n 1 with a=10.6329(18), b=13.026(2), c=12.267(2) Å, Z=4, V=12.267(2) Å3, Mr=319.35, Dc=1.270mg/m3, S=1.027, F(000) =672, μ (Mo Kα)=0.085mm-1, each cell contained four molecules. The structure of the titled compound with atomic numbering scheme is shown in Fig. 1. The selected bond lengths (Å) and bond angles (°) are given in Tab. 2, the selected torsional angles (°) for the target compound 3 are given in Tab. 3, and hydrogen bond lengths (Å) and bond angles (°) are given in Tab. 4.

    Figure 1

    图 1.  化合物3的晶体空间结构和原子位置
    Figure 1.  X-ray crystal structure of compound 3 with atom labels

    Table 2

    表 2  部分健长(键长(Å)和健角(键角)数据(°)
    Table 2.  Selected bond lengths (Å) and bond angles (°)
    下载: 导出CSV
    Bond Dist.
    O(1)-C(5) 1.347(2)
    O(1)-C(6) 1.439(2)
    N(3)-H(3) 0.8600
    N(3)-C(14) 1.395(2)
    N(3)-C(13) 1.4205(19)
    N(2)-H(2) 0.8600
    N(2)-C(7) 1.349(2)
    N(2)-C(8) 1.404(2)
    C(19)-H(19) 0.9300
    C(19)-C(18) 1.378(3)
    C(7)-C(4) 1.491(2)
    C(13)-C(12) 1.385(2)
    C(4)-C(5) 1.398(2)
    C(4)-C(3) 1.385(2)
    C(9)-H(9) 0.9300
    C(9)-C(10) 1.382(3)
    N(1)-C(5) 1.321(2)
    N(1)-C(1) 1.327(3)
    C(16)-H(16) 0.9300
    C(16)-C(17) 1.380(2)
    C(17)-H(17) 0.9300
    C(17)-C(18) 1.379(3)
    C(18)-H(18) 0.9300
    C(3)-H(3A) 0.9300
    C(3)-C(2) 1.384(3)
    C(6)-H(6A) 0.9600
    C(6)-H(6B) 0.9600
    C(6)-H(6C) 0.9600
    C(12)-H(12) 0.9300
    C(12)-C(11) 1.375(3)
    C(10)-H(10) 0.9300
    C(10)-C(11) 1.369(3)
    C(11)-H(11) 0.9300
    C(2)-H(2A) 0.9300
    C(2)-C(1) 1.353(3)
    C(1)-H(1) 0.9300
    Angle (°)
    C(5)-O(1)-C(6) 117.89(14)
    C(14)-N(3)-H(3) 119.0
    C(14)-N(3)-C(13) 122.09(12)
    C(13)-N(3)-H(3) 119.0
    C(8)-N(2)-H(2) 115.5
    C(7)-N(2)-H(2) 115.5
    C(7)-N(2)-C(8) 128.91(13)
    N(3)-C(14)-C(19) 119.54(13)
    C(15)-C(14)-N(3) 122.05(13)
    C(15)-C(14)-C(19) 118.38(14)
    C(14)-C(15)-H(15) 119.8
    C(16)-C(15)-C(14) 120.36(14)
    C(16)-C(15)-H(15) 119.8
    C(13)-C(8)-N(2) 116.46(13)
    C(9)-C(8)-N(2) 124.19(14)
    C(9)-C(8)-C(13) 119.33(15)
    C(14)-C(19)-H(19) 119.8
    C(18)-C(19)-C(14) 120.47(16)
    C(18)-C(19)-H(19) 119.8
    N(2)-C(7)-C(4) 118.03(13)
    O(2)-C(7)-N(2) 122.28(16)
    O(2)-C(7)-C(4) 119.69(15)
    C(8)-C(13)-N(3) 120.06(13)
    C(12)-C(13)-N(3) 120.63(15)
    C(12)-C(13)-C(8) 119.18(15)
    C(5)-C(4)-C(7) 127.51(14)
    C(3)-C(4)-C(7) 117.32(16)
    C(3)-C(4)-C(5) 115.17(17)
    C(8)-C(9)-H(9) 120.1
    C(10)-C(9)-C(8) 119.86(17)
    C(10)-C(9)-H(9) 120.1
    C(5)-N(1)-C(1) 117.57(19)
    C(15)-C(16)-H(16) 119.5
    C(17)-C(16)-C(15) 120.96(16)
    C(17)-C(16)-H(16) 119.5
    O(1)-C(5)-C(4) 117.66(14)
    N(1)-C(5)-O(1) 117.56(16)
    N(1)-C(5)-C(4) 124.78(16)
    C(16)-C(17)-H(17) 120.5
    C(18)-C(17)-C(16) 118.91(16)
    C(18)-C(17)-H(17) 120.5
    C(19)-C(18)-C(17) 120.90(16)
    C(19)-C(18)-H(18) 119.6
    C(17)-C(18)-H(18) 119.6
    C(4)-C(3)-H(3A) 119.7
    C(2)-C(3)-C(4) 120.6(2)
    C(2)-C(3)-H(3A) 119.7
    O(1)-C(6)-H(6A) 109.5
    O(1)-C(6)-H(6B) 109.5
    O(1)-C(6)-H(6C) 109.5
    H(6A)-C(6)-H(6B) 109.5
    H(6A)-C(6)-H(6C) 109.5
    H(6B)-C(6)-H(6C) 109.5
    C(13)-C(12)-H(12) 119.5
    C(11)-C(12)-C(13) 120.94(18)
    C(11)-C(12)-H(12) 119.5
    C(9)-C(10)-H(10) 119.6
    C(11)-C(10)-C(9) 120.80(18)
    C(11)-C(10)-H(10) 119.6
    C(12)-C(11)-H(11) 120.1
    C(10)-C(11)-C(12) 119.87(18)
    C(10)-C(11)-H(11) 120.1
    C(3)-C(2)-H(2A) 120.8
    C(1)-C(2)-C(3) 118.34(19)
    C(1)-C(2)-H(2A) 120.8
    N(1)-C(1)-C(2) 123.5(2)
    N(1)-C(1)-H(1) 118.2
    C(2)-C(1)-H(1) 118.2
    Symmetry transformation: a: x, y+1, z; b: -x, y, -z+1/2; c: -x, -y+1, -z

    Table 3

    表 3  化合物3的二面角(°)
    Table 3.  Selected torsional angles (°) for the target compound 3
    下载: 导出CSV
    Angle (°)
    N(3)-C(14)-C(15)-C(16) -176.83(15)
    N(3)-C(14)-C(19)-C(18) 176.79(16)
    N(3)-C(13)-C(12)-C(11) -175.61(16)
    N(2)-C(8)-C(13)-N(3) -2.04(19)
    N(2)-C(8)-C(13)-C(12) -177.77(14)
    N(2)-C(8)-C(9)-C(10) 177.44(15)
    N(2)-C(7)-C(4)-C(5) -6.6(2)
    N(2)-C(7)-C(4)-C(3) 173.40(15)
    O(2)-C(7)-C(4)-C(5) 174.10(17)
    O(2)-C(7)-C(4)-C(3) -5.9(2)
    C(14)-N(3)-C(13)-C(8) 89.41(17)
    C(14)-N(3)-C(13)-C(12) -94.92(18)
    C(14)-C(15)-C(16)-C(17) -0.5(3)
    C(14)-C(19)-C(18)-C(17) 0.7(3)
    C(15)-C(14)-C(19)-C(18) -1.0(2)
    C(15)-C(16)-C(17)-C(18) 0.1(3)
    C(8)-N(2)-C(7)-O(2) 1.4(3)
    C(8)-N(2)-C(7)-C(4) -177.89(14)
    C(8)-C(13)-C(12)-C(11) 0.1(3)
    C(8)-C(9)-C(10)-C(11) 0.4(3)
    C(19)-C(14)-C(15)-C(16) 0.9(2)
    C(7)-N(2)-C(8)-C(13) 173.58(15)
    C(7)-N(2)-C(8)-C(9) -5.2(2)
    C(7)-C(4)-C(5)-O(1) -0.3(3)
    C(7)-C(4)-C(5)-N(1) 179.80(17)
    C(7)-C(4)-C(3)-C(2) -179.51(17)
    C(13)-N(3)-C(14)-C(15) -24.0(2)
    C(13)-N(3)-C(14)-C(19) 158.27(14)
    C(13)-C(8)-C(9)-C(10) -1.3(2)
    C(13)-C(12)-C(11)-C(10) -1.1(3)
    C(4)-C(3)-C(2)-C(1) -0.2(3)
    C(9)-C(8)-C(13)-N(3) 176.83(13)
    C(9)-C(8)-C(13)-C(12) 1.1(2)
    C(9)-C(10)-C(11)-C(12) 0.8(3)
    C(16)-C(17)-C(18)-C(19) -0.2(3)
    C(5)-C(4)-C(3)-C(2) 0.5(3)
    C(5)-N(1)-C(1)-C(2) 0.6(3)
    C(3)-C(4)-C(5)-O(1) 179.78(15)
    C(3)-C(4)-C(5)-N(1) -0.2(3)
    C(3)-C(2)-C(1)-N(1) -0.3(4)
    C(6)-O(1)-C(5)-C(4) -174.01(19)
    C(6)-O(1)-C(5)-N(1) 5.9(3)
    C(1)-N(1)-C(5)-O(1) 179.70(18)
    C(1)-N(1)-C(5)-C(4) -0.4(3)

    Table 4

    表 4  化合物3的氢键(Å)和健角(°)
    Table 4.  Hydrogen bond lengths (Å) and bond angles (°) of compound 3
    下载: 导出CSV
    D-H…A d(D-H) d(H…A) d(D…A) ∠DHA
    N(3)—H(3)…O(2) 0.86 2.28 2.9045(5) 130
    C(9)—H(9)…O(2) 0.93 2.26 2.847(2) 120.6
    N(2)—H(2)…O(1) 0.86 1.96 2.6736(17) 139.1
    Symmetry codes: (a) -x, -y+1, -z; (b) -x+1/2, -y+3/2, -z; (c) x, y, z-1

    In the crystal structure of compound 3, there are three aromatic rings forming the three planes in the molecules: two phenyl ring (plane1, C(8)-C(9)- C(10)-C(11)-C(12)-C(13), plane 2, C(14)-C(15)-C(16)-C(17)-C(18)-C(19)), and the pyridine ring (plane 3, N(1)-C(1)-C(2)-C(3)-C(4)-C(5)). The dihedral angles between planes 1 and 2 and planes 1 and 3 are 72.210° and 12.241°, respectively.

    As outlined in Fig. 1 and Tab. 1, the bond lengths of O(1)-C(6) and O(2)-C(7) are 1.439(2) and 1.2195 (19) Å, respectively, which are typical C-O and C=O bond[7]. While the bond distance of O(1)-C(5) is 1.347, shorter than the usual C-O bond length, which may be caused by the conjugation effect[8]. The bond lengths of N(3)-C(14), N(3)-C(13), N(2)-C(8) and N(2)-C(7) are in the range of 1.395(2) to 1.42 Å, shorter than the typical C-N bond distance of 1.47~1.50 Å. This is due to the fact that the lone pair electrons on N could form a p-π conjugate with the benzene rings (plane 1 and plane 2).

    As shown in Fig. 2, an intermolecular N(3)—H(3)…O(2) hydrogen bond is formed between the amino and carbon oxide groups, with distance of 2.9045(17) Å and angel of 130.1°, which is a typical V-shaped hydrogen bond. The intramolecular hydrogen bonds played an important role in stabilizing the crystal structure.

    Figure 2

    图 2.  化合物3的分子间氢键图
    Figure 2.  One-dimensional chain structure of compound 3 with hydrogen bonding interactions

    According to the literatures[9], a certain quality of the compound 3 was weighted by the analytical balance (0.0001 g), and liquid formulation was made with 1.0%~5.0% DMF solvent and 1% Tween-80 emulsifier, then the liquid mixture was diluted with water. In the potting activity test, Barnyard grass was selected as test weed. The inhibitory activity data at the dose of 3000 g a.i/hm2 were listed in Tab. 5.

    Table 5

    表 5  目标化合物3的除草活性
    Table 5.  Herbicidal activity of compound 3
    下载: 导出CSV
    Compound herbicidal inhibition rate/%
    3 91.81
    Propaquizafop 93.84

    Control effect (%)=(the number of live weeds in the control area-the number of live weeds in the treated area)/the number of live weeds in the control area × 100%.

    Figure 3

    图 3.  化合物3的分子堆积图
    Figure 3.  Molecular stacking diagram of compound 3

    The herbicidal bioassay showed that compound 3 had 91.81% inhibition against Barnyard grass at 3000 g a.i/hm2, equivalent to the commercial herbicide Propaquizafop (3000 g a.i/hm2). The compound 3 can be used as a lead compound for further research.


    1. [1]

      Xiong L, Shen Y Q, Jiang L N, et al. ACS Symp. Ser., 2015, 1204, 175~194.

    2. [2]

      Zhang Y B. New progress of world pesticide. Third Edition. Chemical Industry Press: China, 2013.

    3. [3]

      Li S K, Li D, Xiao T, et al. J. Agric. Food Chem., 2016, 64: 8927~8934. doi: 10.1021/acs.jafc.6b03464

    4. [4]

      Ye Y H, Ma L, Dai Z C, et al. J. Agric. Food Chem., 2014, 62: 4063~4071. doi: 10.1021/jf405437k

    5. [5]

      Sheldrick G M. SADABS. Program for the Absorption Correction. University of Göttingen, Germany 2004.

    6. [6]

      Sheldrick G M. SHELXS 97. Program for the Solution of Crystal Structure. University of Göttingen, Germany. 1997.

    7. [7]

      Chen X M, Cai J W. Crystal Structure Analysis of the Principles and Practice. Science Press: China, 2007.

    8. [8]

      Wang F, Zhou X H, Xiao X S, et al. Chin. J. Struct. Chem., 2019, 38: 1701~1706.

    9. [9]

      杨子辉, 田昊, 张莉.现代农药, 2017, 16(5): 10~12. 10.3969/j.issn.1671-5284.2017.06.004

  • Scheme 1  Synthetic route of titled compound N-[2-(phenylamino) phenyl]-2-methoxyl pyridine carboxamide(3)

    Figure 1  X-ray crystal structure of compound 3 with atom labels

    Figure 2  One-dimensional chain structure of compound 3 with hydrogen bonding interactions

    Figure 3  Molecular stacking diagram of compound 3

    Table 1.  Crystal data and structure refinements of compound 3

    Compound 3
    Empirical formula C19 H17N3O2
    Formula weight 319.35
    Crystal system Monoclinic
    Space group P 1 21/n 1
    a 10.6329(18)
    b 13.026(2)
    c 12.267(2)
    V3 1669.7(5)
    Z, Calculated density(g/cm3) 4, 1.270
    Absorption coefficient/mm-1 0.085
    F(000) 672
    Crystal size(mm) 0.28×0.25 ×0.21
    θ/(°) 3.128~27.619
    Limiting indices -13≤h≤13, -16≤k≤16,
    -15≤l≤15
    Reflections collected/unique 34623/3854 [R(int)=0.0387]
    Data/restraints/parameters 3854/0/218
    Goodness-of-fit on F2 1.027
    Final R indices [I>2sigma(I)] R1=0.0535, wR2=0.1353
    R indices (all data) R1=0.0766, wR2=0.1500
    Largest diff. peak and hole 0.361 and -0.410 e·Å-3
    下载: 导出CSV

    Table 2.  Selected bond lengths (Å) and bond angles (°)

    Bond Dist.
    O(1)-C(5) 1.347(2)
    O(1)-C(6) 1.439(2)
    N(3)-H(3) 0.8600
    N(3)-C(14) 1.395(2)
    N(3)-C(13) 1.4205(19)
    N(2)-H(2) 0.8600
    N(2)-C(7) 1.349(2)
    N(2)-C(8) 1.404(2)
    C(19)-H(19) 0.9300
    C(19)-C(18) 1.378(3)
    C(7)-C(4) 1.491(2)
    C(13)-C(12) 1.385(2)
    C(4)-C(5) 1.398(2)
    C(4)-C(3) 1.385(2)
    C(9)-H(9) 0.9300
    C(9)-C(10) 1.382(3)
    N(1)-C(5) 1.321(2)
    N(1)-C(1) 1.327(3)
    C(16)-H(16) 0.9300
    C(16)-C(17) 1.380(2)
    C(17)-H(17) 0.9300
    C(17)-C(18) 1.379(3)
    C(18)-H(18) 0.9300
    C(3)-H(3A) 0.9300
    C(3)-C(2) 1.384(3)
    C(6)-H(6A) 0.9600
    C(6)-H(6B) 0.9600
    C(6)-H(6C) 0.9600
    C(12)-H(12) 0.9300
    C(12)-C(11) 1.375(3)
    C(10)-H(10) 0.9300
    C(10)-C(11) 1.369(3)
    C(11)-H(11) 0.9300
    C(2)-H(2A) 0.9300
    C(2)-C(1) 1.353(3)
    C(1)-H(1) 0.9300
    Angle (°)
    C(5)-O(1)-C(6) 117.89(14)
    C(14)-N(3)-H(3) 119.0
    C(14)-N(3)-C(13) 122.09(12)
    C(13)-N(3)-H(3) 119.0
    C(8)-N(2)-H(2) 115.5
    C(7)-N(2)-H(2) 115.5
    C(7)-N(2)-C(8) 128.91(13)
    N(3)-C(14)-C(19) 119.54(13)
    C(15)-C(14)-N(3) 122.05(13)
    C(15)-C(14)-C(19) 118.38(14)
    C(14)-C(15)-H(15) 119.8
    C(16)-C(15)-C(14) 120.36(14)
    C(16)-C(15)-H(15) 119.8
    C(13)-C(8)-N(2) 116.46(13)
    C(9)-C(8)-N(2) 124.19(14)
    C(9)-C(8)-C(13) 119.33(15)
    C(14)-C(19)-H(19) 119.8
    C(18)-C(19)-C(14) 120.47(16)
    C(18)-C(19)-H(19) 119.8
    N(2)-C(7)-C(4) 118.03(13)
    O(2)-C(7)-N(2) 122.28(16)
    O(2)-C(7)-C(4) 119.69(15)
    C(8)-C(13)-N(3) 120.06(13)
    C(12)-C(13)-N(3) 120.63(15)
    C(12)-C(13)-C(8) 119.18(15)
    C(5)-C(4)-C(7) 127.51(14)
    C(3)-C(4)-C(7) 117.32(16)
    C(3)-C(4)-C(5) 115.17(17)
    C(8)-C(9)-H(9) 120.1
    C(10)-C(9)-C(8) 119.86(17)
    C(10)-C(9)-H(9) 120.1
    C(5)-N(1)-C(1) 117.57(19)
    C(15)-C(16)-H(16) 119.5
    C(17)-C(16)-C(15) 120.96(16)
    C(17)-C(16)-H(16) 119.5
    O(1)-C(5)-C(4) 117.66(14)
    N(1)-C(5)-O(1) 117.56(16)
    N(1)-C(5)-C(4) 124.78(16)
    C(16)-C(17)-H(17) 120.5
    C(18)-C(17)-C(16) 118.91(16)
    C(18)-C(17)-H(17) 120.5
    C(19)-C(18)-C(17) 120.90(16)
    C(19)-C(18)-H(18) 119.6
    C(17)-C(18)-H(18) 119.6
    C(4)-C(3)-H(3A) 119.7
    C(2)-C(3)-C(4) 120.6(2)
    C(2)-C(3)-H(3A) 119.7
    O(1)-C(6)-H(6A) 109.5
    O(1)-C(6)-H(6B) 109.5
    O(1)-C(6)-H(6C) 109.5
    H(6A)-C(6)-H(6B) 109.5
    H(6A)-C(6)-H(6C) 109.5
    H(6B)-C(6)-H(6C) 109.5
    C(13)-C(12)-H(12) 119.5
    C(11)-C(12)-C(13) 120.94(18)
    C(11)-C(12)-H(12) 119.5
    C(9)-C(10)-H(10) 119.6
    C(11)-C(10)-C(9) 120.80(18)
    C(11)-C(10)-H(10) 119.6
    C(12)-C(11)-H(11) 120.1
    C(10)-C(11)-C(12) 119.87(18)
    C(10)-C(11)-H(11) 120.1
    C(3)-C(2)-H(2A) 120.8
    C(1)-C(2)-C(3) 118.34(19)
    C(1)-C(2)-H(2A) 120.8
    N(1)-C(1)-C(2) 123.5(2)
    N(1)-C(1)-H(1) 118.2
    C(2)-C(1)-H(1) 118.2
    Symmetry transformation: a: x, y+1, z; b: -x, y, -z+1/2; c: -x, -y+1, -z
    下载: 导出CSV

    Table 3.  Selected torsional angles (°) for the target compound 3

    Angle (°)
    N(3)-C(14)-C(15)-C(16) -176.83(15)
    N(3)-C(14)-C(19)-C(18) 176.79(16)
    N(3)-C(13)-C(12)-C(11) -175.61(16)
    N(2)-C(8)-C(13)-N(3) -2.04(19)
    N(2)-C(8)-C(13)-C(12) -177.77(14)
    N(2)-C(8)-C(9)-C(10) 177.44(15)
    N(2)-C(7)-C(4)-C(5) -6.6(2)
    N(2)-C(7)-C(4)-C(3) 173.40(15)
    O(2)-C(7)-C(4)-C(5) 174.10(17)
    O(2)-C(7)-C(4)-C(3) -5.9(2)
    C(14)-N(3)-C(13)-C(8) 89.41(17)
    C(14)-N(3)-C(13)-C(12) -94.92(18)
    C(14)-C(15)-C(16)-C(17) -0.5(3)
    C(14)-C(19)-C(18)-C(17) 0.7(3)
    C(15)-C(14)-C(19)-C(18) -1.0(2)
    C(15)-C(16)-C(17)-C(18) 0.1(3)
    C(8)-N(2)-C(7)-O(2) 1.4(3)
    C(8)-N(2)-C(7)-C(4) -177.89(14)
    C(8)-C(13)-C(12)-C(11) 0.1(3)
    C(8)-C(9)-C(10)-C(11) 0.4(3)
    C(19)-C(14)-C(15)-C(16) 0.9(2)
    C(7)-N(2)-C(8)-C(13) 173.58(15)
    C(7)-N(2)-C(8)-C(9) -5.2(2)
    C(7)-C(4)-C(5)-O(1) -0.3(3)
    C(7)-C(4)-C(5)-N(1) 179.80(17)
    C(7)-C(4)-C(3)-C(2) -179.51(17)
    C(13)-N(3)-C(14)-C(15) -24.0(2)
    C(13)-N(3)-C(14)-C(19) 158.27(14)
    C(13)-C(8)-C(9)-C(10) -1.3(2)
    C(13)-C(12)-C(11)-C(10) -1.1(3)
    C(4)-C(3)-C(2)-C(1) -0.2(3)
    C(9)-C(8)-C(13)-N(3) 176.83(13)
    C(9)-C(8)-C(13)-C(12) 1.1(2)
    C(9)-C(10)-C(11)-C(12) 0.8(3)
    C(16)-C(17)-C(18)-C(19) -0.2(3)
    C(5)-C(4)-C(3)-C(2) 0.5(3)
    C(5)-N(1)-C(1)-C(2) 0.6(3)
    C(3)-C(4)-C(5)-O(1) 179.78(15)
    C(3)-C(4)-C(5)-N(1) -0.2(3)
    C(3)-C(2)-C(1)-N(1) -0.3(4)
    C(6)-O(1)-C(5)-C(4) -174.01(19)
    C(6)-O(1)-C(5)-N(1) 5.9(3)
    C(1)-N(1)-C(5)-O(1) 179.70(18)
    C(1)-N(1)-C(5)-C(4) -0.4(3)
    下载: 导出CSV

    Table 4.  Hydrogen bond lengths (Å) and bond angles (°) of compound 3

    D-H…A d(D-H) d(H…A) d(D…A) ∠DHA
    N(3)—H(3)…O(2) 0.86 2.28 2.9045(5) 130
    C(9)—H(9)…O(2) 0.93 2.26 2.847(2) 120.6
    N(2)—H(2)…O(1) 0.86 1.96 2.6736(17) 139.1
    Symmetry codes: (a) -x, -y+1, -z; (b) -x+1/2, -y+3/2, -z; (c) x, y, z-1
    下载: 导出CSV

    Table 5.  Herbicidal activity of compound 3

    Compound herbicidal inhibition rate/%
    3 91.81
    Propaquizafop 93.84
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  38
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2020-12-18
  • 收稿日期:  2020-04-08
  • 接受日期:  2020-06-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章