Citation: LIU Yu-lan, ZHANG Ze-kai, NI Guang, LIU Hua-yan, CHEN Yin-fei. Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 703-709. shu

Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts

Figures(4)

  • A series of LiMn2O4/TiO2 catalysts with spinel crystal structure were prepared by solid state reaction method, and the catalytic performance of oxidative coupling of methane on the different catalysts, such as TiO2, Li/TiO2, Mn/TiO2, LiMn2O4 as well as LiMn2O4/TiO2, was evaluated. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, CO2 temperature programmed desorption and H2 temperature programmed reduction. It is found that LiMn2O4 with spinel structure has high catalytic activity in oxidative coupling of methane reaction. 25.8% of CH4 conversion, 43.2% of C2 selectivity was obtained under the reaction conditions of 775℃, 0.1MPa, 7200mL·h-1·g-1, CH4:O2(volume ratio)=2.5. The introduction of TiO2 support can not only improve CH4 conversion and C2 selectivity, but also restrain the deep oxidation of methane to CO2. The LiMn2O4/TiO2 with 8% loading amount showed the best activity, on which 31.6% of CH4 conversion, 52.4% of C2 selectivity were obtained and CO2 selectivity was decreased to 26.3%. The effect of calcination temperature on the activity of LiMn2O4/TiO2 catalysts was investigated. 850℃ is the optimal calcination temperature.
  • 加载中
    1. [1]

      KELLER G E, BHASIN M M. Synthesis of ethylene via oxidative coupling of methane:I. Determination of active catalysts[J]. J Catal, 1982,73(1):9-19. doi: 10.1016/0021-9517(82)90075-6

    2. [2]

      ZHANG Zhi-xiang, WANG Feng-rong, YUAN Hui-min, WANG Si-han, ZHANG Bao-jun, MENG Su-feng. The research progress of the oxidative coupling of methane to ethylene[J]. Mod Chem Ind, 2007,27(3):20-25.

    3. [3]

      WANG Fan, ZHENG Dan-xing. The thermodynamic equilibrium limit for the oxidative coupling of methane[J]. J Fuel Chem Technol, 2006,34(1):71-74.  

    4. [4]

      KORF S J, ROOS J A, DERKSEN J W H C, VREEMAN J A, VAN OMMEN J G, ROSS J R H. Oxidative coupling of methane over Ba/CaO catalysts:A comparison with Li/MgO[J]. Appl Catal, 1990,59(1):291-309. doi: 10.1016/S0166-9834(00)82205-8

    5. [5]

      JI S F, XIAO T C, LI S B, CHOU L J, ZHANG B, XU C Z, HOU R I, YORK A P E, GREEN M L H. Surface WO4 tetrahedron:The essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts[J]. J Catal, 2003,220(1):47-56. doi: 10.1016/S0021-9517(03)00248-3

    6. [6]

      IVANOV D V, ISUPOVA L A, GERASIMOV E Y, DOVLITOVA L S, GLAZNEVA T S, PROSVIRIN I P. Oxidative methane coupling over Mg, Al, Ca, Ba, Pb-promoted SrTiO3 and Sr2TiO4:Influence of surface composition and microstructure[J]. Appl Catal A:Gen, 2014,485:10-19. doi: 10.1016/j.apcata.2014.07.024

    7. [7]

      CHEN Hong-shan, NIU Jian-zhong, ZHAGN Bing, LI Shu-ben. The synergistic effect over the components of Na-W-Mn/SiO2 catalyst[J]. Chin J Catal, 2000,21(1):55-58.

    8. [8]

      SONG Guo-hua, MIU Jian-wen, FAN Yi-ning, ZHOU Jing. In situ ESR and TPSR measurements of SrTi0.975Li0.025O3-δ nanocatalysts for oxidative coupling of methane at low-temperature[J]. J Fuel Chem Technol, 2010,38(4):490-495.  

    9. [9]

      HARGREAVES J S J, HUTCHINGS G J, JOYNER R W, KIELY C J. Structural aspects of magnesium oxide catalysts for the oxidative coupling of methane[J]. Catal Today, 1991,10(3):259-266. doi: 10.1016/0920-5861(91)80005-T

    10. [10]

      WANG D J, ROSYNEK M P, LUNSFORD J H. The effect of chloride Ions on a Li+-MgO catalyst for the oxidative dehydrogenation of ethane[J]. J Catal, 1995,151(1):155-167. doi: 10.1006/jcat.1995.1018

    11. [11]

      XU M, LUNSFORD J. Effect of temperature on methyl radical generation over Sr/La2O3 catalysts[J]. Catal Lett, 1991,11(3/6):295-300.

    12. [12]

      MAHMOODI S, EHSANI M R, GHOREISHI S M. Effect of promoter in the oxidative coupling of methane over synthesized Mn/SiO2 nanocatalysts via incipient wetness impregnation[J]. J Ind Eng Chem, 2010,16(6):923-928. doi: 10.1016/j.jiec.2010.09.007

    13. [13]

      ARNDT S, OTREMBA T, SIMON U, YILDIZ M, SCHUBERT H, SCHOMÄCKER R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?[J]. Appl Catal A:Gen, 2012,425-426:53-61. doi: 10.1016/j.apcata.2012.02.046

    14. [14]

      TIEMERSMA T P, TUINIER M J, GALLUCCI F, KUIPERS J A M, ANNALAND M V S. A kinetics study for the oxidative coupling of methane on a Mn/Na2WO4/SiO2 catalyst[J]. Appl Catal A:Gen, 2012,433-434:96-108. doi: 10.1016/j.apcata.2012.05.002

    15. [15]

      BECK B, FLEISCHER V, ARNDT S, HEVIA M G, URAKAWA A, HUGO P, SCHOMÄCKER R. Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering[J]. Catal Today, 2014,228:212-218. doi: 10.1016/j.cattod.2013.11.059

    16. [16]

      KOIRALA R, BVCHEL R, PRATSINIS S E, BAIKER A. Oxidative coupling of methane on flame-made Mn-Na2WO4/SiO2:Influence of catalyst composition and reaction conditions[J]. Appl Catal A:Gen, 2014,484:97-107. doi: 10.1016/j.apcata.2014.07.013

    17. [17]

      KOU Y, WANG H, ZHANG H, YANG X. Amorphous features of working catalysts[J]. Catal Today, 1999,51(1):47-57. doi: 10.1016/S0920-5861(99)00007-3

    18. [18]

      MALEKZADEH A, KHODADADI A, ABEDINI M, AMINI M, BAHRAMIAN A, DALAI A K. Correlation of electrical properties and performance of OCM MOx/Na2WO4/SiO2 catalysts[J]. Catal Commun, 2001,2(8):241-247. doi: 10.1016/S1566-7367(01)00034-6

    19. [19]

      WANG D J, ROSYNEK M P, LUNSFORD J H. Oxidative coupling of methane over oxide-supported sodium-manganese catalysts[J]. J Catal, 1995,155(2):390-402. doi: 10.1006/jcat.1995.1221

    20. [20]

      MALEKZADEH A, KHODADADI A, DALAI A K, ABEDINI M. Oxidative coupling of methane over lithium doped (Mn+W)/SiO2 catalysts[J]. J Nat Gas Chem, 2007,16(2):121-129. doi: 10.1016/S1003-9953(07)60037-1

    21. [21]

      ZHONG W, DAI H X, NG C F, AU C T. A comparison of nanoscale and large-size BaCl2-modified Er2O3 catalysts for the selective oxidation of ethane to ethylene[J]. Appl Catal A:Gen, 2000,203(2):239-250. doi: 10.1016/S0926-860X(00)00486-5

    22. [22]

      ZHAO Q, BAO X H, WANG Y, LIN L W, LI G, GUO X W, WANG X S. Studies on superoxide O2- species on the interaction of TS-1 zeolite with H2O2[J]. J Mol Catal A:Chem, 2000,157(1/2):265-268.

    23. [23]

      WANG Z, ZOU G, LUO X, LIU H, GAO R, CHOU L, WANG X. Oxidative coupling of methane over BaCl2-TiO2-SnO2 catalyst[J]. J Nat Gas Chem, 2012,21(1):49-55. doi: 10.1016/S1003-9953(11)60332-0

    24. [24]

      SHEN Hong-fu, WANG Xin-ping, LIU Qin. Li2SO4-MnxOy/TiO2 catalyst for the oxidative coupling of methane[J]. Chin J Catal, 1990,11(1):60-65.

    25. [25]

      KONDRATENKO E V, WOLF D, BAERNS M. Influence of electronic properties of Na2O/CaO catalysts on their catalytic characteristics for the oxidative coupling of methane[J]. Catal Lett, 1999,58:217-223. doi: 10.1023/A:1019058724099

    26. [26]

      MALEKZADEH A, ABEDINI M, KHODADADI A A, AMINI M, MISHRA H K, DALAI A K. Critical influence of Mn on low-temperature catalytic activity of Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane[J]. Catal Lett, 2002,84:45-51. doi: 10.1023/A:1021020516674

    27. [27]

      YANG T L, FENG L B, SHEN S K. Oxygen species on the surface of La2O3/CaO and its role in the oxidative coupling of methane[J]. J Catal, 1994,145:384-389. doi: 10.1006/jcat.1994.1048

    28. [28]

      GOPINATH C S, HEGDE S G, RAMASWAMY A V, MAHAPATRA S. Photoemission studies of polymorphic CaCO3 materials[J]. Mater Res Bull, 2002,37(7):1323-1332. doi: 10.1016/S0025-5408(02)00763-8

    29. [29]

      FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun, 2013,42:50-53. doi: 10.1016/j.catcom.2013.07.035

    30. [30]

      JONES C A, LEONARD J J, SOFRANKO J A. The oxidative conversion of methane to higher hydrocarbons over alkali-promoted Mn-SiO2[J]. J Catal, 1987,103:311-319. doi: 10.1016/0021-9517(87)90123-0

    31. [31]

      LI H, VRINAT M, BERHAULT G, LI D, NIE H, AFANASIEV P. Hydrothermal synthesis and acidity characterization of TiO2 polymorphs[J]. Mater Res Bull, 2013,48(9):3374-3382. doi: 10.1016/j.materresbull.2013.05.017

    32. [32]

      KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994,3(2):173-189.  

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(0)
  • Abstract views(864)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return