Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue
- Corresponding author: HUANG Yan-qin, huangyq@ms.giec.ac.cn
Citation:
YUAN Song, HUANG Yan-qin, LIU Hua-cai, YUAN Hong-you, ZHUANG Xiu-zheng, YIN Xiu-li, WU Chuang-zhi. Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(1): 39-52.
ALBA L G, TORRI C, SAMORI C, VAN DER SPEK J, FABBRI D, KERSTEN S R A, BRILMAN D W F. Hydrothermal treatment (HTT) of microalgae:Evaluation of the process as conversion method in an algae biorefinery concept[J]. Energy Fuels, 2012,26(1):642-657.
SABER M, NAKHSHINIEV B, YOSHIKAWA K. A review of production and upgrading of algal bio-oil[J]. Renewable Sustainble Energy Rev, 2016,58:918-930. doi: 10.1016/j.rser.2015.12.342
AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable Sustainble Energy Rev, 2011,15(3):1615-1624. doi: 10.1016/j.rser.2010.11.054
DIMITRIADIS A, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production:A state of the art review[J]. Renewable Sustainable Energy Rev, 2017,68:113-125. doi: 10.1016/j.rser.2016.09.120
XU Y P, DUAN P G, WANG F. Hydrothermal processing of macroalgae for producing crude bio-oil[J]. Fuel Process Technol, 2015,130:268-274. doi: 10.1016/j.fuproc.2014.10.028
SINGH R, BHASKAR T, BALAGURUMURTHY B. Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata[J]. Process Saf Environ Protect, 2015,93:154-160. doi: 10.1016/j.psep.2014.03.002
GUO Q J, WU M, WANG K, ZHANG L, XU X F. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts[J]. Ind Eng Chem Res, 2015,54(3):890-899. doi: 10.1021/ie5042935
DUAN P, WANG B, XU Y. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae[J]. Bioresour Technol, 2015,186:58-66. doi: 10.1016/j.biortech.2015.03.050
SINGH R, BALAGURUMURTHY B, BHASKAR T. Hydrothermal liquefaction of macro algae:Effect of feedstock composition[J]. Fuel, 2015,146:69-74. doi: 10.1016/j.fuel.2015.01.018
BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresour Technol, 2011,102(1):215-225. doi: 10.1016/j.biortech.2010.06.028
JAZRAWI C, BILLER P, ROSS A B, MONTOYA A, MASCHMEYER T, HAYNES B S. Pilot plant testing of continuous hydrothermal liquefaction of microalgae[J]. Algal Res, 2013,2(3):268-277. doi: 10.1016/j.algal.2013.04.006
COLE A, DINBURG Y, HAYNES B S, HE Y, HERSKOWITZ M, JAZRAWI C, LANDAU M, LIANG X, MAGNUSSON M, MASCHMEYER T, MASTERS A F, MEIRI N, NEVEUX N, DE NYS R, PAUL N, RABAEV M, VIDRUK-NEHEMYA R, YUEN A K L. From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating[J]. Energy Environ Sci, 2016,9(5):1828-1840. doi: 10.1039/C6EE00414H
CHIARAMONTI D, PRUSSI M, BUFFI M, RIZZO A M, PARI L. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Appl Energy, 2017,185:963-972. doi: 10.1016/j.apenergy.2015.12.001
GUO Y, YEH T, SONG W, XU D, WANG S. A review of bio-oil production from hydrothermal liquefaction of algae[J]. Renewable Sustainable Energy Rev, 2015,48:776-790. doi: 10.1016/j.rser.2015.04.049
ARVINDNARAYAN S, SIVAGNANA PRABHU K K, SHOBANA S, KUMAR G, DHARMARAJA J. Upgrading of micro algal derived bio-fuels in thermochemical liquefaction path and its perspectives:A review[J]. Int Biodeterior Biodegrad, 2017,119:260-272. doi: 10.1016/j.ibiod.2016.08.011
TERI G, LUO L G, SAVAGE P E. Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures[J]. Energy Fuels, 2014,28(12):7501-7509. doi: 10.1021/ef501760d
JAZRAWI C, BILLER P, HE Y Y, MONTOYA A, ROSS A B, MASCHMEYER T, HAYNES B S. Two-stage hydrothermal liquefaction of a high-protein microalga[J]. Algal Res, 2015,8:15-22. doi: 10.1016/j.algal.2014.12.010
DU Z, MOHR M, MA X, CHENG Y, LIN X, LIU Y, ZHOU W, CHEN P, RUAN R. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresour Technol, 2012,120:13-18. doi: 10.1016/j.biortech.2012.06.007
HUANG Z, WUFUER A, WANG Y, DAI L. Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content[J]. Process Biochem, 2018,69:136-143. doi: 10.1016/j.procbio.2018.03.018
GOLLAKOTA A R K, KISHORE N, GU S. A review on hydrothermal liquefaction of biomass[J]. Renewable Sustainable Energy Rev, 2018,81:1378-1392. doi: 10.1016/j.rser.2017.05.178
XU D H, SAVAGE P E. Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae[J]. Algal Res, 2015,12:60-67. doi: 10.1016/j.algal.2015.08.005
MIAO C, CHAKRABORTY M, CHEN S. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process[J]. Bioresour Technol, 2012,110:617-627. doi: 10.1016/j.biortech.2012.01.047
PETERSON A A, VOGEL F, LACHANCE R P, FROLING M, ANTAL M J, TESTER J W. Thermochemical biofuel production in hydrothermal media:A review of sub-and supercritical water technologies[J]. Energy Environ Sci, 2008,1(1):32-65. doi: 10.1039/b810100k
DOTE Y, INOUE S, OGI T, YOKOYAMA S. Studies on the direct liquefaction of protein-contained biomass:The distribution of nitrogen in the products[J]. Biomass Bioenergy, 1996,11(6):491-498. doi: 10.1016/S0961-9534(96)00045-1
DOTE Y, INOUE S, OGI T, YOKOYAMA S. Distribution of nitrogen to oil products from liquefaction of amino acids[J]. Bioresour Technol, 1998,64(2):157-160. doi: 10.1016/S0960-8524(97)00079-5
ZOU S, WU Y, YANG M, KALEEM I, CHUN L, TONG J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae dunaliella tertiolecta cake[J]. Energy, 2010,35(12):5406-5411. doi: 10.1016/j.energy.2010.07.013
CHEN Y, WU Y L, ZHANG P L, HUA D R, YANG M D, LI C, CHEN Z, LIU J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012,124:190-198. doi: 10.1016/j.biortech.2012.08.013
HUANG Y Q, CHEN Y P, XIE J J, LIU H C, YIN X L, WU C Z. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp and cultivated Bacillariophyta sp[J]. Fuel, 2016,183:9-19. doi: 10.1016/j.fuel.2016.06.013
CHEN Y, WU Y, ZHANG P, HUA D, YANG M, LI C, CHEN Z, LIU J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012,124:190-198. doi: 10.1016/j.biortech.2012.08.013
WANG S, JIANG D, CAO B, HU Y M, YUAN C, WANG Q, HE Z X, HUI C W, ABOMOHRA A, LIU X L, FENG Y Q, ZHANG B. Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis[J]. J Anal Appl Pyrolysis, 2018,132:111-122. doi: 10.1016/j.jaap.2018.03.009
TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013,47(7):3498-3505. doi: 10.1021/es304248j
MACKINNON S L, HILTZ D, UGARTE R, CRAFT C A. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts[J]. J Appl Phycol, 2010,22(4):489-494. doi: 10.1007/s10811-009-9483-0
RIZZI G P. Free radicals in the maillard reaction[J]. Food Rev Int, 2003,19(4):375-395. doi: 10.1081/FRI-120025481
WANG S, WANG Q, HU Y M, XU S N, HE Z X, JI H S. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique[J]. J Anal Appl Pyrolysis, 2015,114:109-118. doi: 10.1016/j.jaap.2015.05.008
LI R, ZHONG Z, JIN B, ZHENG A. Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms[J]. Energy Fuels, 2012,26(5):2996-3002. doi: 10.1021/ef300180r
SEBESTYEN Z, BARTA-RAJNAI E, CZEGENY Z, BHASKAR T, KRISHNA B B, MAY Z, BOZI J, BARTA Z, SINGH R, JAKAB E. Thermoanalytical characterization and catalytic conversion of deoiled micro algae and jatropha seed cake[J]. Energy Fuels, 2016,30(10):7982-7993. doi: 10.1021/acs.energyfuels.6b01024
YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12/13):1781-1788.
SINGH S, WU C, WILLIAMS P T. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques[J]. J Anal Appl Pyrolysis, 2012,94:99-107. doi: 10.1016/j.jaap.2011.11.011
HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
CHIAVARI G, GALLETTI G C. Pyrolysis-gas chromatography mass-spectrometry of amino-acids[J]. J Anal Appl Pyrolysis, 1992,24(2):123-137. doi: 10.1016/0165-2370(92)85024-F
GAUTAM R, VARMA A K, VINU R. Apparent kinetics of fast pyrolysis of four different microalgae and product analyses using pyrolysis-FTIR and pyrolysis-GC/MS[J]. Energy Fuels, 2017,31(11):12339-12349. doi: 10.1021/acs.energyfuels.7b02520
MIAO X, WU Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides[J]. J Biotechnol, 2004,110(1):85-93.
ROSS A B, JONES J M, KUBACKI M L, BRIDGEMAN T. Classification of macroalgae as fuel and its thermochemical behavior[J]. Bioresour Technol, 2008,99(14):6494-6504. doi: 10.1016/j.biortech.2007.11.036
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
Lijun Zhou , Dongmei Wang , Jiameng Wang , Tongjie Yao , Mei Qi , Yin Kong , Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
——: raw material; ---: 175 ℃-soild; ┄┄: 200 ℃-soild