Citation: YUAN Song, HUANG Yan-qin, LIU Hua-cai, YUAN Hong-you, ZHUANG Xiu-zheng, YIN Xiu-li, WU Chuang-zhi. Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 39-52. shu

Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue

  • Corresponding author: HUANG Yan-qin, huangyq@ms.giec.ac.cn
  • Received Date: 24 August 2018
    Revised Date: 5 November 2018

    Fund Project: Science and Technology Program of Guangzhou 201804010153The project was supported by the National Natural Science Foundation of China (51776207), Science and Technology Program of Guangzhou (201804010153) and Natural Science Foundation of Guangdong Province (2017B030308002)Natural Science Foundation of Guangdong Province 2017B030308002the National Natural Science Foundation of China 51776207

Figures(11)

  • Decomposition behavior of Chlorella sp. during low-temperature hydrothermal pretreatment (HTP) were studied. Distribution of various product yields, element components, energy recovery ratio and key elements (i.e., C and N) along with temperature (125-200℃) were investigated. The results show that amounts of C and N are enriched into aqueous phase, and high content of NH3-N is detected due to deamination reaction above 175℃. During the HTP process, N distribution in oil product first increases gradually and then rapidly increases above 175℃. During the whole low-temperature HTP process, the yield and energy recovery ratio of solid residue decreases continuously. The N/C and O/C ratio of the solid residue also decreases, indicating HPT would promote property of the solid residue. The functional structure and thermal-degradation of Chlorella sp. and its solid residue are then comparatively examined by various techniques including FT-IR, XPS, TG-FTIR-MS and Py-GC/MS. The results show that functional structure of the solid residue is distinguished from that of the raw sample. The relative content of C-C bond increases while that of C-N and C-O bonds decreases. In addition to protein-N and quaternary-N, a low fraction of pyridine-N is also detected in the solid residue. Compared with these from raw material, less NH3 and HCN are released from solid residue, and less N-containing heterocyclic compounds are generated during rapid pyrolysis.
  • 加载中
    1. [1]

      ALBA L G, TORRI C, SAMORI C, VAN DER SPEK J, FABBRI D, KERSTEN S R A, BRILMAN D W F. Hydrothermal treatment (HTT) of microalgae:Evaluation of the process as conversion method in an algae biorefinery concept[J]. Energy Fuels, 2012,26(1):642-657.  

    2. [2]

      SABER M, NAKHSHINIEV B, YOSHIKAWA K. A review of production and upgrading of algal bio-oil[J]. Renewable Sustainble Energy Rev, 2016,58:918-930. doi: 10.1016/j.rser.2015.12.342

    3. [3]

      AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable Sustainble Energy Rev, 2011,15(3):1615-1624. doi: 10.1016/j.rser.2010.11.054

    4. [4]

      DIMITRIADIS A, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production:A state of the art review[J]. Renewable Sustainable Energy Rev, 2017,68:113-125. doi: 10.1016/j.rser.2016.09.120

    5. [5]

      XU Y P, DUAN P G, WANG F. Hydrothermal processing of macroalgae for producing crude bio-oil[J]. Fuel Process Technol, 2015,130:268-274. doi: 10.1016/j.fuproc.2014.10.028

    6. [6]

      SINGH R, BHASKAR T, BALAGURUMURTHY B. Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata[J]. Process Saf Environ Protect, 2015,93:154-160. doi: 10.1016/j.psep.2014.03.002

    7. [7]

      GUO Q J, WU M, WANG K, ZHANG L, XU X F. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts[J]. Ind Eng Chem Res, 2015,54(3):890-899. doi: 10.1021/ie5042935

    8. [8]

      DUAN P, WANG B, XU Y. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae[J]. Bioresour Technol, 2015,186:58-66. doi: 10.1016/j.biortech.2015.03.050

    9. [9]

      SINGH R, BALAGURUMURTHY B, BHASKAR T. Hydrothermal liquefaction of macro algae:Effect of feedstock composition[J]. Fuel, 2015,146:69-74. doi: 10.1016/j.fuel.2015.01.018

    10. [10]

      BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresour Technol, 2011,102(1):215-225. doi: 10.1016/j.biortech.2010.06.028

    11. [11]

      JAZRAWI C, BILLER P, ROSS A B, MONTOYA A, MASCHMEYER T, HAYNES B S. Pilot plant testing of continuous hydrothermal liquefaction of microalgae[J]. Algal Res, 2013,2(3):268-277. doi: 10.1016/j.algal.2013.04.006

    12. [12]

      COLE A, DINBURG Y, HAYNES B S, HE Y, HERSKOWITZ M, JAZRAWI C, LANDAU M, LIANG X, MAGNUSSON M, MASCHMEYER T, MASTERS A F, MEIRI N, NEVEUX N, DE NYS R, PAUL N, RABAEV M, VIDRUK-NEHEMYA R, YUEN A K L. From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating[J]. Energy Environ Sci, 2016,9(5):1828-1840. doi: 10.1039/C6EE00414H

    13. [13]

      CHIARAMONTI D, PRUSSI M, BUFFI M, RIZZO A M, PARI L. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Appl Energy, 2017,185:963-972. doi: 10.1016/j.apenergy.2015.12.001

    14. [14]

      GUO Y, YEH T, SONG W, XU D, WANG S. A review of bio-oil production from hydrothermal liquefaction of algae[J]. Renewable Sustainable Energy Rev, 2015,48:776-790. doi: 10.1016/j.rser.2015.04.049

    15. [15]

      ARVINDNARAYAN S, SIVAGNANA PRABHU K K, SHOBANA S, KUMAR G, DHARMARAJA J. Upgrading of micro algal derived bio-fuels in thermochemical liquefaction path and its perspectives:A review[J]. Int Biodeterior Biodegrad, 2017,119:260-272. doi: 10.1016/j.ibiod.2016.08.011

    16. [16]

      TERI G, LUO L G, SAVAGE P E. Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures[J]. Energy Fuels, 2014,28(12):7501-7509. doi: 10.1021/ef501760d

    17. [17]

      JAZRAWI C, BILLER P, HE Y Y, MONTOYA A, ROSS A B, MASCHMEYER T, HAYNES B S. Two-stage hydrothermal liquefaction of a high-protein microalga[J]. Algal Res, 2015,8:15-22. doi: 10.1016/j.algal.2014.12.010

    18. [18]

      DU Z, MOHR M, MA X, CHENG Y, LIN X, LIU Y, ZHOU W, CHEN P, RUAN R. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresour Technol, 2012,120:13-18. doi: 10.1016/j.biortech.2012.06.007

    19. [19]

      HUANG Z, WUFUER A, WANG Y, DAI L. Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content[J]. Process Biochem, 2018,69:136-143. doi: 10.1016/j.procbio.2018.03.018

    20. [20]

      GOLLAKOTA A R K, KISHORE N, GU S. A review on hydrothermal liquefaction of biomass[J]. Renewable Sustainable Energy Rev, 2018,81:1378-1392. doi: 10.1016/j.rser.2017.05.178

    21. [21]

      XU D H, SAVAGE P E. Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae[J]. Algal Res, 2015,12:60-67. doi: 10.1016/j.algal.2015.08.005

    22. [22]

      MIAO C, CHAKRABORTY M, CHEN S. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process[J]. Bioresour Technol, 2012,110:617-627. doi: 10.1016/j.biortech.2012.01.047

    23. [23]

      PETERSON A A, VOGEL F, LACHANCE R P, FROLING M, ANTAL M J, TESTER J W. Thermochemical biofuel production in hydrothermal media:A review of sub-and supercritical water technologies[J]. Energy Environ Sci, 2008,1(1):32-65. doi: 10.1039/b810100k

    24. [24]

      DOTE Y, INOUE S, OGI T, YOKOYAMA S. Studies on the direct liquefaction of protein-contained biomass:The distribution of nitrogen in the products[J]. Biomass Bioenergy, 1996,11(6):491-498. doi: 10.1016/S0961-9534(96)00045-1

    25. [25]

      DOTE Y, INOUE S, OGI T, YOKOYAMA S. Distribution of nitrogen to oil products from liquefaction of amino acids[J]. Bioresour Technol, 1998,64(2):157-160. doi: 10.1016/S0960-8524(97)00079-5

    26. [26]

      ZOU S, WU Y, YANG M, KALEEM I, CHUN L, TONG J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae dunaliella tertiolecta cake[J]. Energy, 2010,35(12):5406-5411. doi: 10.1016/j.energy.2010.07.013

    27. [27]

      CHEN Y, WU Y L, ZHANG P L, HUA D R, YANG M D, LI C, CHEN Z, LIU J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012,124:190-198. doi: 10.1016/j.biortech.2012.08.013

    28. [28]

      HUANG Y Q, CHEN Y P, XIE J J, LIU H C, YIN X L, WU C Z. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp and cultivated Bacillariophyta sp[J]. Fuel, 2016,183:9-19. doi: 10.1016/j.fuel.2016.06.013

    29. [29]

      CHEN Y, WU Y, ZHANG P, HUA D, YANG M, LI C, CHEN Z, LIU J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012,124:190-198. doi: 10.1016/j.biortech.2012.08.013

    30. [30]

      WANG S, JIANG D, CAO B, HU Y M, YUAN C, WANG Q, HE Z X, HUI C W, ABOMOHRA A, LIU X L, FENG Y Q, ZHANG B. Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis[J]. J Anal Appl Pyrolysis, 2018,132:111-122. doi: 10.1016/j.jaap.2018.03.009

    31. [31]

      TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013,47(7):3498-3505. doi: 10.1021/es304248j

    32. [32]

      MACKINNON S L, HILTZ D, UGARTE R, CRAFT C A. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts[J]. J Appl Phycol, 2010,22(4):489-494. doi: 10.1007/s10811-009-9483-0

    33. [33]

      RIZZI G P. Free radicals in the maillard reaction[J]. Food Rev Int, 2003,19(4):375-395. doi: 10.1081/FRI-120025481

    34. [34]

      WANG S, WANG Q, HU Y M, XU S N, HE Z X, JI H S. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique[J]. J Anal Appl Pyrolysis, 2015,114:109-118. doi: 10.1016/j.jaap.2015.05.008

    35. [35]

      LI R, ZHONG Z, JIN B, ZHENG A. Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms[J]. Energy Fuels, 2012,26(5):2996-3002. doi: 10.1021/ef300180r

    36. [36]

      SEBESTYEN Z, BARTA-RAJNAI E, CZEGENY Z, BHASKAR T, KRISHNA B B, MAY Z, BOZI J, BARTA Z, SINGH R, JAKAB E. Thermoanalytical characterization and catalytic conversion of deoiled micro algae and jatropha seed cake[J]. Energy Fuels, 2016,30(10):7982-7993. doi: 10.1021/acs.energyfuels.6b01024

    37. [37]

      YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12/13):1781-1788.  

    38. [38]

      SINGH S, WU C, WILLIAMS P T. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques[J]. J Anal Appl Pyrolysis, 2012,94:99-107. doi: 10.1016/j.jaap.2011.11.011

    39. [39]

      HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005

    40. [40]

      CHIAVARI G, GALLETTI G C. Pyrolysis-gas chromatography mass-spectrometry of amino-acids[J]. J Anal Appl Pyrolysis, 1992,24(2):123-137. doi: 10.1016/0165-2370(92)85024-F

    41. [41]

      GAUTAM R, VARMA A K, VINU R. Apparent kinetics of fast pyrolysis of four different microalgae and product analyses using pyrolysis-FTIR and pyrolysis-GC/MS[J]. Energy Fuels, 2017,31(11):12339-12349. doi: 10.1021/acs.energyfuels.7b02520

    42. [42]

      MIAO X, WU Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides[J]. J Biotechnol, 2004,110(1):85-93.  

    43. [43]

      ROSS A B, JONES J M, KUBACKI M L, BRIDGEMAN T. Classification of macroalgae as fuel and its thermochemical behavior[J]. Bioresour Technol, 2008,99(14):6494-6504. doi: 10.1016/j.biortech.2007.11.036

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    11. [11]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Lijun Zhou Dongmei Wang Jiameng Wang Tongjie Yao Mei Qi Yin Kong Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113

    18. [18]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(8)
  • Abstract views(2468)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return