Citation: DOU Bao-juan, ZHAO Chen-chen, ZHANG Qing, YAN Ning-na, YANG De-yu, HAO Qing-lan. Catalytic degradation of toluene over Cu-Mn-Ce-Zr/TiO2 coupled with low temperature plasma[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 598-604. shu

Catalytic degradation of toluene over Cu-Mn-Ce-Zr/TiO2 coupled with low temperature plasma

  • Corresponding author: HAO Qing-lan, haoqinglan@tust.edu.cn
  • Received Date: 30 November 2018
    Revised Date: 28 February 2019

    Fund Project: The project was supported by the China Postdoctoral Science Foundation 2017M623284The project was supported by the China Postdoctoral Science Foundation (2017M623284).

Figures(6)

  • A series of supported CuxMn1-xCe0.75Zr0.25/TiO2 (x = 1.0, 0.75, 0.5, 0.25, 0) catalysts were prepared by impregnation and characterized by XRD, H2-TPR, O2-TPD and XPS; the performance of CuxMn1-xCe0.75Zr0.25/TiO2 catalysts in the degradation of toluene coupled with low temperature plasma under high space velocity was then investigated. The results indicate that the composite catalysts with single Cu or Mn as the main active component exhibit higher activity than those with double Cu and Mn components; the addition of second component may weaken the interaction between Cu and Ce, leading to a decrease in the content of lattice oxygen and the reducibility at low temperature. The CuCe0.75Zr0.25/TiO2 catalyst exhibits superior performance for toluene oxidation in the initial reaction stage, owing to its high content of lattice oxygen and oxygen vacancies. With the increase of the specific energy density (SED) of low temperature plasma, the concentration of O3 increases and the MnCe0.75Zr0.25/TiO2 catalyst then displays higher activity in toluene degradation than CuCe0.75Zr0.25/TiO2, because of the prominent enhancement of synergistic effect between plasma and catalyst over the former MnCe0.75Zr0.25/TiO2 catalyst.
  • 加载中
    1. [1]

      CHEN Ying, YE Dai-qi, LIU Xiu-zhen, WU Jun-liang, HUANG Bi-chun, ZHENG Ya-nan. Source tracing and characteristics of industrial VOCs emissions in China[J]. China Environ Sci, 2012,32(1):48-55. doi: 10.3969/j.issn.1000-6923.2012.01.008

    2. [2]

      KARUPPIAH J, SIVACHANDIRAN L, KARVEMBU R, SUBRAHMANYAM C. Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol[J]. Chem Eng J, 2010,165(1):194-199. doi: 10.1016/j.cej.2010.09.017

    3. [3]

      HU Hui, LI Sheng-li, YANG Chang-he, LI Jin. The progress on study of treatment of volatile organic compounds by discharge plasma[J]. High Volt Eng, 2002,28(3):43-47. doi: 10.3969/j.issn.1003-6520.2002.03.018

    4. [4]

      DOU B J, LIU D L, ZHANG Q, ZHAO R Z, HAO Q L, BIN F, CAO J G. Enhanced removal of toluene by dielectric barrier discharge coupling with Cu-Ce-Zr supported ZSM-5/TiO2/Al2O3[J]. Catal Commun, 2017,92:15-18. doi: 10.1016/j.catcom.2016.12.024

    5. [5]

      FAN H Y, SHI C, LI X S, ZHAO D Z, XU Y, ZHU A M. High-efficiency plasma catalytic removal of dilute benzene from air[J]. J Phys D:Appl Phys, 2009,42(22):225105-225109. doi: 10.1088/0022-3727/42/22/225105

    6. [6]

      ZHANG H B, LI K, SUN T H, JIA J P, LOU Z Y, FENG L L. Removal of styrene using dielectric barrier discharge plasmas combined with sol-gel prepared TiO2 coated λ-Al2O3[J]. Chem Eng J, 2014,241:92-102. doi: 10.1016/j.cej.2013.12.019

    7. [7]

      DANG Xiao-qing, ZHOU Yu-xiang, HUANG Jia-yu, ZHU Hai-ying, QIN Cai-hong. Plasma-catalytic decomposition of adsorbed benzene withgas circulation[J]. Chin J Environ Eng, 2015,9(3):1355-1360.  

    8. [8]

      GUAN Xiu-juan, YE Dai-qi, HUANG Hai-bao. Study on toluene destruction in air stream by dielectric barrier discharge combined with catalytic system[J]. Chin J Environ Eng, 2008,2(7):977-982.  

    9. [9]

      HASAN M A, ZAKI M I, PASUPULETY L, KUMARI K. Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts[J]. Appl Catal A:Gen, 1999,181(1):171-179. doi: 10.1016/S0926-860X(98)00430-X

    10. [10]

      ZHANG Xiao-yu, LIU Zhi-min, WEI Zhen-ling, DU Xiao-chun, GONG Mao-chu. Preparation of high performance methane combustion catalyst and its application to natural gas catalytic combustion Fan-Boiler[J]. J Catal, 2006,27(9):823-826. doi: 10.3321/j.issn:0253-9837.2006.09.015

    11. [11]

      LI W B, CHU W B, ZHUANG M, HUA J. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions[J]. Catal Today, 2004,93(3):205-209.  

    12. [12]

      LI Hong-fang, LIU Xue-song, GUO Cun-xia, LIU Tong, LUO Meng-fei, LU Ji-qing. The influence of the carrier on the catalytic oxidation of formaldehyde on the loaded gold catalyst[J]. J Catal, 2009,30(10):1001-1006. doi: 10.3321/j.issn:0253-9837.2009.10.007

    13. [13]

      OKUMURA K, KOBAYASHI T, TANAKA H, NIWA M. Toluene combustion over palladium supported on various metal oxide supports[J]. Appl Catal B:Environ, 2003,44(4):325-331. doi: 10.1016/S0926-3373(03)00101-2

    14. [14]

      YAO Shui-liang, MAO Lin-ai, ZHANG Xia, TANG Xiu-juan. Mechanism analysis of benzene catalytic oxidation using plasma reactor with micro-level noble catalysts[J]. High Volt Eng, 2017,43(12):3973-3980.  

    15. [15]

      SELLICK D R, ARANDA A, GARCÍA T, LÓPEZ J M, SOLAONA B, MASTRAL A M, MORGAN D J, CARLEY A F, TAYLOR S H. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Appl Catal B:Environ, 2013,132/133(1):98-106.  

    16. [16]

      ZHAO C C, HAO Q L, ZHANG Q, YAN N N, LIU J R, DOU B J, BIN F. Catalytic self-sustained combustion of toluene and reaction pathway over CuxMn1-xCe0.75Zr0.25/TiO2 catalysts[J]. Appl Catal A:Gen, 2019,569:66-74. doi: 10.1016/j.apcata.2018.10.034

    17. [17]

      GUO X L, LI J, ZHOU R X. Catalytic performance of manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas[J]. Fuel, 2016,163:56-64. doi: 10.1016/j.fuel.2015.09.043

    18. [18]

      SANTOS V P, PEREIRA M F R, ÓRFÄO J J M, FIGUEIREDO J L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Appl Catal B:Environ, 2010,99(1/2):353-363.  

    19. [19]

      LI L M, JING F L, YAN J L, JING J, CHU W. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion[J]. Catal Today, 2017,297:167-172. doi: 10.1016/j.cattod.2017.04.053

    20. [20]

      DENG Q F, REN T Z, BAO A, LIU Y P, YUAN Z Y. Mesoporous Cex Zr1-xO2 solid solutions supported CuO nanocatalysts for toluene total oxidation[J]. J Ind Eng Chem, 2014,20(5):3303-3312. doi: 10.1016/j.jiec.2013.12.012

    21. [21]

      TANG W X, WU X F, LIU G, LI S D, LI D Y, LI W H, CHEN Y F. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. J Rare Earth, 2015,33(1):62-69. doi: 10.1016/S1002-0721(14)60384-7

    22. [22]

      DOU B J, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549-556. doi: 10.1016/j.cej.2015.02.004

    23. [23]

      DOU B J, BIN F, WANG C, JIA Q Z, LI J. Discharge characteristics and abatement of volatile organic compounds using plasma reactor packed with ceramic Raschig rings[J]. J Electrost, 2013,71(5):939-944. doi: 10.1016/j.elstat.2013.08.003

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(6)
  • Abstract views(854)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return