Citation: Cao Hongyu, Wu Yanhua, Ren Cong, Zhou Xingzhi, Jiang Ge. 3D-QSAR Studies on Biaryl-Type Inhibitors for the Bromodomains of CBP/P300[J]. Chemistry, ;2018, 81(6): 548-554. shu

3D-QSAR Studies on Biaryl-Type Inhibitors for the Bromodomains of CBP/P300

  • Corresponding author: Jiang Ge, jiangge1004@163.com
  • Received Date: 16 January 2018
    Accepted Date: 3 March 2018

Figures(5)

  • CREB-binding protein (CBP) and the highly homologous P300 are two subtypes of histone acetylase, which can bind to chromatin through their bromodomain (BRD). The CBP/P300 have already become a hot topic in the field of cancer target for they play important roles in the occurrence and development of tumors. In this study, the three-dimensional quantitative structure-activity relationship (3D-QSAR) was established based on the biaryl inhibitors for the bromodomain of CBP/P300. In order to determine the quantitative relationship between molecular structure and biological activity of biaryl inhibitors, the 3D-QSAR models of 35 inhibitors were established with comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). The predicted pIC50 values of CoMFA and CoMSIA models were basically consistent with the actual pIC50 values, indicating that both models had highly predictive ability and statistical significance. Information of steric, electrostatic, hydrophobic, hydrogen bond acceptor and donor fields provided by CoMFA and CoMSIA could propose novel drug design ideas to design more effective inhibitors with higher activity for the bromodomain of CBP/P300.
  • 加载中
    1. [1]

      M Delvecchio, J Gaucher, C Aguilar-Gurrieri et al. Nat. Struct. Mol. Biol., 2013, 20: 1040-1046. 

    2. [2]

      N Vo, R H Goodman. J. Biol. Chem., 2001, 276: 13505-13508. 

    3. [3]

      S Mujtaba, Y He, L Zeng et al. Mol. Cell, 2004, 13: 251-263. 

    4. [4]

      J Wincent, A Luthman, M van Belzen et al. Mol. Genet. Genomic. Med., 2015, 4(1): 39-45.

    5. [5]

    6. [6]

      A Ito, C H Lai, X Zhao et al. EMBO J., 2001, 20: 1331-1340. 

    7. [7]

      E K Schorry, M Keddache, N Lanphear et al. Am. J. Med. Genet. A, 2008, 146A(19): 2512-2519.

    8. [8]

      I Radhakrishnan, G C Perez-Alvarado, D Parker et al. Cell, 1997, 91: 741-752. 

    9. [9]

      L Jin, J Garcia, E Chan et al. Cancer Res., 2017, 77(20): 5564-5575. 

    10. [10]

      J H Kim, E J Cho, S T Kim et al. Nat. Struct. Mol. Biol., 2005, 12: 423-428. 

    11. [11]

      J Vervoorts, J M Lüscherfirzlaff, S Rottmann et al. EMBO Rep., 2003, 4: 484-490. 

    12. [12]

      A R Conery, R C Centore, A Neiss et al. eLife, 2016, e10483.

    13. [13]

      T D Crawford, F A Romero, K W Lai et al. J. Med. Chem., 2016, 59: 10549-10563. 

    14. [14]

      P Filippakopoulos, O Fedorov, S Picaud et al. Angew. Chem. Int. Ed., 2014, 53: 6126-6130. 

    15. [15]

      S Picaud, O Fedorov, A Thanasopoulou et al. Cancer Res., 2015, 75: 5106-5119. 

    16. [16]

      R D Cramer, D E Patterson, J D Bunce. J. Am. Chem. Soc., 1988, 110: 5959-5967. 

    17. [17]

      G Klebe, U Abraham, T Mietzner. J. Med. Chem., 1994, 37: 4130-4146. 

    18. [18]

      K W Lai, F A Romero, V Tsui et al. Bioorg. Med. Chem. Lett., 2018, 28: 15-23. 

    19. [19]

    20. [20]

    21. [21]

    22. [22]

  • 加载中
    1. [1]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    2. [2]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    3. [3]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    4. [4]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    10. [10]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    11. [11]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    18. [18]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

Metrics
  • PDF Downloads(3)
  • Abstract views(854)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return