One step synthesis of 2, 5-furandicarboxylic acid from fructose catalyzed by Ce modified Ru/HAP
- Corresponding author: ZHANG Jian, zhangjian-lnpu@163.com
Citation:
YANGYANG Jia-zi, ZHOU Feng, MA Hui-xia, LI Xue-lei, YUAN Xing-zhou, LIANG Fei-xue, ZHANG Jian. One step synthesis of 2, 5-furandicarboxylic acid from fructose catalyzed by Ce modified Ru/HAP[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(8): 942-948.
SHEN G F, ZHANG S C, LEI Y, SHI J Q, XIA Y, MEI F M, CHEN Z Q, YIN G C. Catalytic carbonylation of renewable furfural derived 5-bromofurfural to 5-formyl-2-furancarboxylic acid in oil/aqueous bi-phase system[J]. Mol Catal, 2019,463:94-98. doi: 10.1016/j.mcat.2018.11.021
ROMEN Y, CHHEDA A, DUMESIC J. Phase modifiers promote efficient production of Hydroxymethylfurfural from fructose[J]. Sci, 2006,312(5782):1933-1937. doi: 10.1126/science.1126337
WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Graded ordered porous sulfonated carbon catalyzed conversion of fructose to 5-hydroxymethylfurfural[J]. J Fuel Chem Technol, 2016,44(11):1341-1348.
ZHU Li-wei, WANG Jian-gang, ZHAO Ping-ping, SONG Feng, SUN Xiu-yu, WANG Li-hong, CUI Hong-you, YI Wei-ming. Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxyme thylfurfural[J]. J Fuel Chem Technol, 2017,45(6):651-659.
BESSON M, PIERRE G, CATHERINE P. Conversion of biomass into chemicals over metal catalysts[J]. Chem Rev, 2014,114:1827-1870. doi: 10.1021/cr4002269
DESSBESELL L, SOUZANCHI S, VENKATESWARA R, SADRA S. Production of 2, 5-furandicarboxylic acid (FDCA) from starch, glucose, or high-fructose corn syrup:Techno-economic analysis[J]. Biofuels Bioprod Bior, 2019,4(1):1-12.
MONICA G, GANDINA A, SILVESTRE A, BRUNO R. Synthesis and characterization of poly (2, 5-furan dicarboxylates) based on a variety of diols[J]. J Polym Sci Poly Chem, 2011,49(17):3759-3768. doi: 10.1002/pola.24812
KNOOP R, VOGELZANG W, HAVEREN J, VAN E, DAAN S. High molecular weight poly(ethylene-2, 5-furanoate); critical aspects in synthesis and mechanical property determination[J]. J Polym Sci Poly Chem, 2013,51(19):4191-4199. doi: 10.1002/pola.26833
AMARASEKARA A, GREEN D, WILLIAMS L. Renewable resources based polymers:Synthesis and characterization of 2, 5-diformylfuran-urea resin[J]. Eur Polym J, 2009,45(2):595-598. doi: 10.1016/j.eurpolymj.2008.11.012
GAO L, DENG K, ZHENG J, LIU B, ZHANG Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid catalyzed by merrifield resin supported cobalt porphyrin[J]. Chem Eng J, 2015,270:444-449. doi: 10.1016/j.cej.2015.02.068
CHEN Guang-yu, WU Lin-bo, LI Bo-geng. Research progress of synthesis of 2, 5-furandicarboxylic acid based on HMF route[J]. Chem Ind Eng Prog, 2018,37(8):3146-3154.
YAN D X, WANG G Y, GAO K, LU X M, XIN J Y, ZHANG S J. One-Pot synthesis of 2, 5-Furandicarboxylic acid from fructose in ionic liquids[J]. Ind Eng Chem Res, 2018,57(6):1851-1858. doi: 10.1021/acs.iecr.7b04947
LI C Z, CAI H L, ZHANG B, LI W Z, PEI G X, DAI T, WANG A Q, ZHANG T. Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system[J]. Chin J Catal, 2015,47(2):135-146.
CHIDAMBARAM M, BELL A. A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids[J]. Green Chem, 2010,12(7):1253-1262. doi: 10.1039/c004343e
YI G S, TESONG S, LI X K, ZHANG Y G. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-Furandicarboxylic acid[J]. ChemSusChem, 2015,7(8):2131-2135.
HAN X W, GENG L, GUO Y, JIA R, LIU X H, ZHANG Y G, WANG Y Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chem, 2016,18(6):1597-1604. doi: 10.1039/C5GC02114F
PASINI T, PICCININI M, BIOSI M, BONELLI R, ALBONETTI S, DIMITRATOS N, LOPEZSANCHEZ J. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles[J]. Green Chem, 2011,13(8):2091-2099. doi: 10.1039/c1gc15355b
GUPTA N, NISHIMURA S, TAKAGATI A, EBITANI K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chem, 2011,13(4):824-827.
YI G S, ZHANG Y, TEONG S. Base-free conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Ru/C catalyst[J]. Green Chem, 2016,18:977-983.
AN J H, WANG Y H, XIN Z, ZHANG Z X, ZHANG J, MARTIN G, RAFAL E, DUNIN-BORKOWSKI R E, WANG F. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst[J]. Chin J Catal, 2020,41(06):963-971. doi: 10.1016/S1872-2067(19)63527-8
GAO T, CHEN J, FANG W, CAO Q, DUMEIGNIL F. Ru/Mn Ce1O catalysts with enhanced oxygen mobility and strong metal-support interaction:Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation[J]. J Catal, 2018,368:53-68. doi: 10.1016/j.jcat.2018.09.034
YAN D X, XIN J Y, SHI C Y, LU X M, NI L L, WANG G Y, ZHANG S J. Base-free conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid in ionic liquids[J]. Chem Eng J, 2017,323:473-482. doi: 10.1016/j.cej.2017.04.021
WANG S G, ZHANG Z H, LIU B, LI J L. Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst[J]. Ind Eng Chem Res, 2014,53(14):5820-5827. doi: 10.1021/ie500156d
GOSWAMI S, MARIE D, RAGHAVAN V. Microwave assisted synthesis of 5-Hydroxymethylfurfural from starch in AlCl3.6H2O/DMSO/[BMIM]Cl system[J]. J Ind Eng Chem, 2016,55(16):4473-4481. doi: 10.1021/acs.iecr.6b00201
CASANOVA , ONOFRE , IBORRA S, CORMA A. Biomass into chemicals:Aerobic oxidation of 5-Hydroxymethyl-2-furfural into 2, 5-Furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem, 2009,2(12):1138-1144. doi: 10.1002/cssc.200900137
VUYYURU K, STRASSER P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today, 2012,195(1):144-154. doi: 10.1016/j.cattod.2012.05.008
YANG S X, ZHU W P, WANG J B, CHEN Z X. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor[J]. J Hazard Mater, 2008,153(3):1248-1253. doi: 10.1016/j.jhazmat.2007.09.084
FEI Z Y, YANG Y R, WANG M B, TAO Z L, LIU Q, CHEN X, CUI M, ZHANG Z X, TANG J H, QIAO X. Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2018,353:930-939. doi: 10.1016/j.cej.2018.07.198
SU Y, TANG Z C, HAN W L, ZHANG P, SONG Y, LU G X. Influence of the pore structure of CeO2 supports on the surface texture and catalytic activity for CO oxidation[J]. Crystengcomm, 2014,16(24):5189-5197. doi: 10.1039/c4ce00182f
HAN X, LI C Q, LIU X H, XIA Q, WANG Y Q. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chem, 2017,19(4):996-1004. doi: 10.1039/C6GC03304K
TORRENTE L, GILBANK A, PUERTOLAS B, GARCIA T, SOLSONA B, CHADWICK D. Shape-dependency activity of nanostructured CeO in the total oxidation of polycyclic aromatic hydrocarbons[J]. Appl Catal B:Environ, 2013,132-133(15):116-122.
NISHIUMI M, MIURA H, WADA K, HOSOKAWA S. Active ruthenium catalysts based on phosphine-modified Ru/CeO2for the selective addition of carboxylic acids to terminal alkynes[J]. ACS Catal, 2012,2(8):1753-1759. doi: 10.1021/cs300151x
MA Z X, YANG H S, LI Q, ZHENG Z W, ZHANG X B. Catalytic reduction of NO by NH3 over Fe-Cu-OX/CNTs-TiO2 composites at low temperature[J]. Appl Catal A:Gen, 2012,427-428:43-48. doi: 10.1016/j.apcata.2012.03.028
TIAN W, YANG H S, FAN X Y, ZHANG X B. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. J Hazard Mater, 2011,188(1/3):105-109.
ZHANG Y, WANG J J, LI X C, LIU X H, XIA Y J, HU B C, LU G Z. Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts[J]. Fuel, 2015,139(1):301-307.
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Jinyuan Cui , Tingting Yang , Teng Xu , Jin Lin , Kunlong Liu , Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
a: 0%Ce-Ru/HAP; b: 2%Ce-Ru/HAP; c: 4%Ce-Ru/HAP; d: 6%Ce-Ru/HAP; e: 8%Ce-Ru/HAP; f: 10%Ce-Ru/HAP
(a): spectrum of Ce-Ru/HAP; (b): spectrum of 0%Ce-Ru/HAP Ru 3d; (c): spectrum of 8%Ce-Ru/HAP Ru 3d; (d): spectrum of 8%Ce-Ru/HAP Ce 3d