Citation: Liu Lin, Chen Zezhi, Huang Minghu, Ma Yanfang. Application of Carbon-Based Quantum Dot Fluorescence Sensor in Environmental Detection[J]. Chemistry, ;2020, 83(9): 777-784. shu

Application of Carbon-Based Quantum Dot Fluorescence Sensor in Environmental Detection

  • Corresponding author: Ma Yanfang, myfedwin@126.com
  • Received Date: 1 April 2020
    Accepted Date: 30 April 2020

Figures(5)

  • Due to the excellent optical properties, good water solubility and good biocompatibility of carbon-based quantum dots, their applications in fluorescent sensors have attracted more and more researcher's attention, especially their excellent detection performance for metal ions, which makes them widely used in environmental detection. In order to better understand the application of carbon-based quantum dots, the synthesis of carbon quantum dots, graphene quantum dots and graphene oxide quantum dots and their application in environmental detection in recent ten years were summarized, and the applications of carbon-based quantum dots fluorescence sensor were also prospected.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

       

    6. [6]

       

    7. [7]

       

    8. [8]

    9. [9]

      Pan Z X, Mora-Sero I, Shen Q, et al. J.Am. Chem. Soc., 2014, 136(25): 9203~9210. 

    10. [10]

      Hines D A, Kamat P V. ACS Appl. Mater. Interf., 2014, 6(5): 3041~3057. 

    11. [11]

      Achermann M, Petruska M A, Crooker S A, et al. J. Phys. Chem. B, 2003, 107(50): 13782~13787. 

    12. [12]

      Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2014, 11(14): 1620~1636.

    13. [13]

      Lim S Y, Wei S, Gao Z Q. Chem. Soc. Rev., 2015, 44(1): 362~381. 

    14. [14]

      Bacon M, Bradley S J, Nann T. Part. Part. Syst. Char., 2014, 31(4): 415~428. 

    15. [15]

      Qian Z S, Shan X Y, Chai L J, et al. Biosens. Bioelectron., 2015, 68: 225~231. 

    16. [16]

      Gao X H, Du C, Zhuang Z H, et al. J. Mater. Chem. C, 2016, 4(29): 6927~6945. 

    17. [17]

       

    18. [18]

      Ding C, Zhu A, Tian Y. Acc. Chem. Res., 2013, 47(1): 20~30. 

    19. [19]

      Chandra S, Pathan S H, Mitra S, et al. RSC Adv., 2012, 2(9): 3602~3606. 

    20. [20]

      Xu X Y, Ray R, Gu Y L, et al. J. Am. Chem. Soc., 2004, 126(40): 12736~12737. 

    21. [21]

      Li C, Wang X, Meziani M J, et al. J. Am. Chem. Soc., 2007, 129(37): 11318~11319. 

    22. [22]

      Zhao Q L, Zhang Z L, Huang B H, et al. Chem. Commun., 2008,44(41): 5116~5118.

    23. [23]

      Bourlinos A B, Stassinopoulos A, Anglos D, et al. Small, 2008, 4(4): 455~458. 

    24. [24]

      Liu R L, Wu D Q, Liu S H, et al. Angew. Chem. Int. Ed., 2009, 48(25): 4598~4601. 

    25. [25]

      Liu Y, Xiao N, Gong N Q, et al. Carbon, 2014, 68: 258~264. 

    26. [26]

      Tomskaya A E, Egorova M N, Kapitonov A N, et al. Phys. Status. Solid-R, 2017, 255(1): 1700222.

    27. [27]

      Himaja A L, Karthik P S, Singh S P. Chem. Rec., 2015, 15(3):595~615. 

    28. [28]

      Li B, Wang X, Guo Y, et al. Dalton Transac., 2016, 45(13):5484~5491. 

    29. [29]

      Gonçalves M R, Duarte A J, Esteves da Silva J C G. Biosens. Bioelectron., 2010, 26(4): 1302~1306. 

    30. [30]

      Wan X, Li S, Zhuang L, et al. J. Nanopart. Res., 2016, 18(7): 202. 

    31. [31]

      Chen J, Li Y, Lv K, et al. Sens. Actuat. B, 2016, 224: 298~306. 

    32. [32]

      Zheng M, Xie Z, Qu D, et al. ACS Appl. Mater. Interf., 2013, 5(24): 13242~13247. 

    33. [33]

      Wee S S, Ng Y H, Ng S M. Talanta, 2013, 116: 71~76. 

    34. [34]

      Qian Z S, Ma J J, Shan X Y, et al. Chem. Eur. J., 2014, 20(11): 2983-2983.

    35. [35]

      Guo Y, Yang L L, Li W W, et al. Microchim. Acta, 2016, 183(4): 1409~1416. 

    36. [36]

      Kwon W, Lim J, Lee J, et al. J. Mater. Chem. C, 2013, 1(10): 2002~2008. 

    37. [37]

    38. [38]

      Shamsipur M, Safavi A, Mohammadpour Z, et al. Microchim. Acta, 2016, 183(7): 2327~2335. 

    39. [39]

      Omer K M. Anal. Bioanal. Chem., 2018, 410(24): 6331~6336. 

    40. [40]

      Wang Y H, Cheng Z, Chen X C, et al. Nanoscale, 2016, 8(11): 5977~5984. 

    41. [41]

      Qu S, Chen H, Zheng X, et al. Nanoscale, 2013, 5(12): 5514~5518. 

    42. [42]

      He L J, Zhang H, Fan H H, et al. Spectrochim. Acta A, 2018, 189: 51~56. 

    43. [43]

      Wu Y P, Liu X, Wu Q H, et al. Sens. Actuat. B, 2017, 246: 680~685. 

    44. [44]

    45. [45]

    46. [46]

      Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696): 666~669. 

    47. [47]

      Jang J, Park J, Nam S, et al. Nanoscale, 2013, 5(22):11094~11101. 

    48. [48]

      Su C Y, Lu A Y, XuY, et al. ACS Nano, 2011, 5(3): 2332~2339. 

    49. [49]

      Yin Z Y, Zhu J X, He Q Y, et al. Adv. Energy Mater., 2013, 4(1): 1300574.

    50. [50]

      Zhu Y, James D K, Tour J M. Adv. Mater., 2012, 24(36): 4924~4955. 

    51. [51]

      Geim A K. Science, 2009, 324(5934):1530~1534. 

    52. [52]

      Pan D, Zhang J, Li Z, et al. Adv. Mater., 2010, 22(6):734~738. 

    53. [53]

      Liu F, Jang M H, Ha H D, et al. Adv. Mater., 2013, 25(27): 3657~3662. 

    54. [54]

      Wang F, Gu Z, Lei W, et al. Sens. Actuat. B, 2014, 190: 516~522. 

    55. [55]

      Xu T T, Yang J X, Song J M, et al. Sens. Actuat. B, 2016, 243: 863~872.

    56. [56]

      Wang B, Zhuo S, Chen L, et al. Spectrochim. Acta A, 2014, 131: 384~387. 

    57. [57]

      Zhang C, Cui Y, Song L, et al. Talanta, 2016, 150(1): 54~60.

    58. [58]

      Li Y, Liu X, Li Q, et al. Chem. Phys. Lett., 2016, 664: 127~132. 

    59. [59]

      Tam T V, Trung N B, Kim H R, et al. Sens. Actuat. B, 2014, 202: 568~573. 

    60. [60]

      Yan Z Y, Qu X C, Niu Q Q, et al. Anal. Methods, 2016, 8(7): 1565~1571. 

    61. [61]

      Anh N T N, Chowdhury A D, Doong R A. Sens. Actuat. B, 2017, 252: 1169~1178. 

    62. [62]

      Gong X, Liu Y, Yang Z, et al. Anal. Chim. Acta, 2017, 968: 85~96. 

    63. [63]

      Gupta B K, Thanikaivelan P, Narayanan T N, et al. Nano. Lett., 2011, 11(12): 5227~5233. 

    64. [64]

      Gao X X, Zhou X, Ma Y F, et al. New. J. Chem., 2018: 10.1039.C8NJ01805G.

    65. [65]

      Wang X, Li R Y, Fan S Y, et al. Sens. Actuat. B, 2017, 243:211~220. 

    66. [66]

      Amini M H, Faridbod F, Ganjali M R, et al. Res. Chem. Intermediat., 2017, 43(12): 7457~7470. 

    67. [67]

      Yan P, Li R Y, Yang Y Q, et al. Spectrochim. Acta A, 2008, 203:139~146.

    68. [68]

      Qi Y X, Zhang M, Fu Q Q, et al. Chem. Commun., 2013, 49(90): 10599~10601. 

    69. [69]

      Sun X Y, Liu P C, Wu L L, et al. Analyst, 2015, 140(19):6742~6747. 

    70. [70]

      Hua M J, Wang C Q, Qian J, et al, Ana. Chim. Acta, 2015, 888: 173~181. 

    71. [71]

      Wen Y Q, Xing F F, He S J, et al. Chem. Commun., 2010, 46(15): 2596~2598. 

    72. [72]

      Kong L T, Wang J, Zheng G C, et al. Chem. Commun., 2011, 47(37): 10389~10391. 

    73. [73]

      Wen Y Q, Peng C, D Li, et al. Chem. Commun., 2011, 47(22): 6278~6280. 

    74. [74]

      Liu M, Zhao H, Chen S, et al. Biosens. Bioelectron., 2011, 26(10): 4111~4116. 

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    3. [3]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    6. [6]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    14. [14]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    15. [15]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(20)
  • Abstract views(2774)
  • HTML views(563)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return