Citation: Zhiqiang Ma, Siqin Xu, Jingru Sun, Jianghao Ji. Research Progress in Removal of Antimony in Wastewater by Modified Biochar[J]. Chemistry, ;2021, 84(4): 372-376, 382. shu

Research Progress in Removal of Antimony in Wastewater by Modified Biochar

  • Corresponding author: Siqin Xu, xusq@gzu.edu.cn
  • Received Date: 10 September 2020
    Accepted Date: 30 November 2020

  • The discharge limit of antimony in wastewater is becoming stricter, and there is an urgent need for efficient and low-cost antimony removal technology in wastewater. First, the mature antimony wastewater treatment technologies and processes are introduced. Then combined with the preparation and characteristics of biochar, the obvious advantages of modified biochar technology applied to the removal and treatment of antimony in wastewater and the research results obtained at this stage are reviewed. The purpose is to provide a reference for the application and promotion of modified biochar technology for the removal of antimony in wastewater.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      He M, Wang X, Wu F, et al. Sci. Total Environ., 2012, 421: 41~50.

    4. [4]

      Wang X, He M, Xi J, et al. Microchem. J., 2011, 97(1): 4~11. 

    5. [5]

       

    6. [6]

       

    7. [7]

      He M, Wang N, Long X, et al. J. Environ. Sci., 2019, 75: 14~39. 

    8. [8]

      Wilson S C, Lockwood P V, Ashley P M, et al. Environ. Pollut., 2010, 158(5): 1169~1181. 

    9. [9]

      Li J, Wei Y, Zhao L, et al. Ecotoxicol. Environ. Safety, 2014, 110: 308~315. 

    10. [10]

       

    11. [11]

       

    12. [12]

       

    13. [13]

       

    14. [14]

       

    15. [15]

      Mondal P, Bhowmick S, Chatterjee D, et al. Chemosphere, 2013, 92(2): 157~170. 

    16. [16]

      Inam M A, Khan R, Park D R, et al. Water, 2018, 10(4): 418. 

    17. [17]

      Du X, Qu F, Liang H, et al. Chem. Eng. J., 2014, 254: 293~301. 

    18. [18]

       

    19. [19]

       

    20. [20]

      Sizmur T, Fresno T, Akgül G, et al. Bioresource Technol., 2017, 246: 34~47. 

    21. [21]

      Inyang M I, Gao B, Yao Y, et al. Crit. Rev. Env. Sci. Tech., 2016, 46(4): 406~433. 

    22. [22]

      Xu Y Z, Fang Z Q. Environ. Eng., 2015, 2: 156~159.

    23. [23]

      Anawar H M, Akter F, Solaiman Z M, et al. Pedosphere, 2015, 25(5): 654~665. 

    24. [24]

      Wang H, Feng L, Chen Y. Chem. Ind. Eng. Prog., 2012, 31(4): 907~914.

    25. [25]

      Ahmad M, Rajapaksha A U, Lim J E, et al. Chemosphere, 2014, 99: 19~33. 

    26. [26]

      Novak J M, Busscher W J, Laird D L, et al. Soil Sci., 2009, 174(2): 105~112. 

    27. [27]

      Wang L, Wang J, Wang Z, et al. Powder Technol., 2019, 345: 501~508. 

    28. [28]

      Wang L, Wang J, Zhang R, et al. RSC Adv., 2016, 6(49): 42876~42884. 

    29. [29]

      Wang Y Y, Ji H Y, Lu H H, et al. RSC Adv., 2018, 8(6): 3264~3273. 

    30. [30]

      Wang L, Wang J, Wang Z, et al. Chem. Eng. J., 2018, 354: 623~632. 

    31. [31]

      Wei D, Li B, Luo L, et al. J. Hazard. Mater., 2020, 391: 122057. 

    32. [32]

       

    33. [33]

       

    34. [34]

      Wan S, Qiu L, Li Y, et al. Chem. Eng. J., 2020, 402: 126021. 

    35. [35]

       

    36. [36]

    37. [37]

    38. [38]

      Xu Y H, Ohki A, Maeda S. Toxicol. Environ. Chem., 2001, 80(3-4): 133~144. 

    39. [39]

      Dou X, Mohan D, Zhao X, et al. Chem. Eng. J., 2015, 264: 617~624. 

    40. [40]

      Xi J, He M, Lin C. Microchem. J., 2011, 97(1): 85~91. 

    41. [41]

      Xi J, He M, Lin C. Environ. Earth Sci., 2010, 60(4): 715~722. 

    42. [42]

      Leng Y, Guo W, Su S, et al. Chem. Eng. J., 2012, 211: 406~411.

    43. [43]

      Shan C, Ma Z, Tong M. J. Hazard. Mater., 2014, 268: 229~236. 

    44. [44]

      Smith P, Adams J, Beerling D J, et al. Ann. Rev. Environ. Resour., 2019, 44: 255~286. 

    45. [45]

      Cao X, Sun S, Sun R. RSC Adv., 2017, 7(77): 48793~48805. 

    46. [46]

      Zhang Z X, Wu J, Chen W F. Adv. Mater. Res., 2014, 898: 456~460. 

    47. [47]

      Enders A, Hanley K, Whitman T, et al. Bioresource Technol., 2012, 114: 644~653. 

    48. [48]

       

    49. [49]

       

    50. [50]

      Qi Z, Joshi T P, Liu R, et al. J. Hazard. Mater., 2018, 343: 36~48. 

    51. [51]

       

    52. [52]

       

    53. [53]

      Liu Y, Sohi S P, Liu S, et al. J. Environ. Manag., 2019, 235: 276~281. 

    54. [54]

      Dong S, Wang Y, Zhao Y, et al. Water Res., 2017, 126: 433~441. 

    55. [55]

      Goh K H, Lim T T. Chemosphere, 2004, 55(6): 849~859. 

    56. [56]

      Wang X, He M, Lin C, et al. Geochemistry, 2012, 72: 41~47. 

  • 加载中
    1. [1]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    15. [15]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(4)
  • Abstract views(673)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return