Citation: FENG Zhi-hao, XU Jun-li, HAO Pan, HOU Ran-ran, GUO Zhen-xing, BAI Jin, BAI Zong-qing, LI Wen. Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1153-1160. shu

Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal

  • Corresponding author: BAI Zong-qing, baizq@sxicc.ac.cn
  • Received Date: 18 July 2018
    Revised Date: 23 August 2018

    Fund Project: The project was supported by joint foundation of Natural Science Foundation of China and Xinjiang Province (U1703252) and National Key Research and Development project of China (2017 YFB0602401)National Key Research and Development project of China 2017 YFB0602401joint foundation of Natural Science Foundation of China and Xinjiang Province U1703252

Figures(8)

  • In order to make rational use of mild liquefaction solid product of Hami coal (MLS), the physicochemical properties of MLS were investigated, and the characteristics and interactive effects of MLS and its extraction fractions during pyrolysis were studied by thermogravimetric analyzer (TGA) in this work. The results show that MLS contains higher content of hexane soluble fraction (HS, 36%) than Shenhua direct liquefaction residue, but has the lower asphaltene (A, 13%) and preasphaltene (PA, 9%). The results of GC-MS show that HS consists of higher content of alkane (41.8%) and the results of infrared spectra indicate that the contents of alkane side chains and substituted functional groups decrease in the order of HS, A, and PA. Whereas, alkane side chains and substituted functional groups do not exist in THFIS, indicating its high aromaticity. The minerals in MLS are mainly CaCO3 produced by liquefaction process, and inert components of SiO2, NaCl, Al2O3·2SiO2·2H2O in raw coal and Fe1-xS, which is the product of catalyst. The results of TGA show that, compared with Shenhua direct liquefaction residue, the temperatures of initial decomposition and the maximum rate of mass loss of MLS are lower, however, the final mass loss (54%) up to 950 ℃ is higher, which suggest that the pyrolysis activity of MLS is higher. In addition, there are two kinds of interactive effects among the extraction fractions of MLS during pyrolysis, which are related to the amount of HS. When the content of HS is high, it can supply small free radicals and play a driving role for the evolution of volatile during the pyrolysis process. However, when the content of HS is low, large free radicals in MLS extraction fractions will combine with each other, which inhibits the release of volatile.
  • 加载中
    1. [1]

      SHI Shi-dong. Fundamentals of Coal Hydrogenation and Liquefaction Engineering[M]. Beijing:Chemical Industry Press, 2012.

    2. [2]

      HUANG Chuan-feng, HAN Lei, WANG Meng-yan, LI Hui-hui, YANG Fan, WANG Yong-juan, LI Da-peng, WANG Ming-feng, HUO Peng-jun, WANG Jian-qiang. Research development of properties and application of coal hydrogenation liquefaction residue[J]. Mod Chem Ind, 2016,36(6):19-23.  

    3. [3]

    4. [4]

      XU Bang, CHU Mo, ZHANG Hui-hui, WANG Fang, LIU Li-xin. Research status of direct coal liquefaction residues pyrolysis[J]. Clean Coal Technol, 2013,19(4):81-84.  

    5. [5]

      LUO W J, LAN X Z, SONG Y H, FU J P. Research progress on utilization of coal liquefaction residue[J]. Mater Rev, 2013,27(6A):153-157.  

    6. [6]

      CHU Xi-jie, LI Wen, BAI Zong-qing, LI Bao-qing. Pyrolysis characteristics of Shenhau direct liquefaction residue[J]. J Fuel Chem Technol, 2009,37(4):393-397. doi: 10.3969/j.issn.0253-2409.2009.04.002

    7. [7]

      LIU X, ZHOU Z J, HU Q J, DAI Z H, WANG F C. Experimental study on co-gasification of coal liquefaction residue and petroleum coke[J]. Energy Fuels, 2011,25(8):3377-3381. doi: 10.1021/ef200402z

    8. [8]

      CHU Xi-jie, LI Wen, LI Bao-qing, CHEN Hao-kan, BAI Zong-qing. Gasification characteristics of coal liquefaction residues with carbon dioxide[J]. J Fuel Chem Technol, 2006,34(2):146-150. doi: 10.3969/j.issn.0253-2409.2006.02.004

    9. [9]

      CUI Hong, YANG Jian-li, LIU Zhen-yu, BI Ji-cheng. Effects of remaining catalyst on volatile matter measurement of coal hydrogenation residue[J]. J Fuel Chem Technol, 2001,29(3):228-231. doi: 10.3969/j.issn.0253-2409.2001.03.007

    10. [10]

      GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhau coal direct liquefaction residue[J]. J China Coal Soc, 2006,31(6):785-789. doi: 10.3321/j.issn:0253-9993.2006.06.019

    11. [11]

      GU Xiao-hui, ZHOU Ming, SHI Shi-dong. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc, 2006,31(1):76-80. doi: 10.3321/j.issn:0253-9993.2006.01.017

    12. [12]

      HUANG Yong, HUANG Sheng, WU Shi-yong, WU You-qing, GAO Jin-sheng. Physic-chemical properties and low temperature pyrolysis behaviors of coal direct liquefaction residue[J]. Coal Convers, 2015,38(4):43-47. doi: 10.3969/j.issn.1004-4248.2015.04.009

    13. [13]

      LI Jun, YANG Jian-li, ZHOU Shu-fen, LI Yun-mei. Pyrolysis property of solvent extracts from a direct coal liquefaction residue[J]. J Fuel Chem Technol, 2010,38(6):647-651. doi: 10.3969/j.issn.0253-2409.2010.06.002

    14. [14]

      XU L, TANG M C, DUAN L, LIU B L, MA X X, ZHANG Y L, ARGYLE M D, FAN M H. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant[J]. Thermochim Acta, 2014,589:1-10. doi: 10.1016/j.tca.2014.05.005

    15. [15]

      WANG Z C, XUE W T, ZHU J, CHEN E S, PAN C X, KANG S G, LEI Z P, REN S B, SHUI H F. Study on the stability of hydro-liquefaction residue of Shenfu sub-bituminous coal[J]. Fuel, 2016,181:711-717. doi: 10.1016/j.fuel.2016.05.042

    16. [16]

      SONG Y H, MA Q N, HE W J, TIAN Y H, LAN X Z. A comparative study on the pyrolysis characteristics of direct-coal-liquefaction residue through microwave and conventional methods[J]. Spectrosc Spec Anal, 2018,38(4):1313-1318.  

    17. [17]

      AWALLUDIN M F, SULAIMAN O, HASHIM R, NADHARI W N A W. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction[J]. Renewable Sustainable Energy Rev, 2015,50:1469-1484. doi: 10.1016/j.rser.2015.05.085

    18. [18]

      CUI H, YANG J L, LIU Z Y, BI J C. Characteristics of residues from thermal and catalytic coal hydroliquefaction[J]. Fuel, 2003,82(12):1549-1556. doi: 10.1016/S0016-2361(03)00072-3

    19. [19]

      BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Transformation of mineral matters in Yanzhou coal ash at high temperature[J]. J China Univ Min Technol, 2008,27(3):369-372. doi: 10.3321/j.issn:1000-1964.2008.03.018

    20. [20]

      MONTANO P A, VAISHNAVA P P, KING J A, EISENTROUT E N. Mossbauer study of decomposition of pyrite in hydrogen[J]. Fuel, 1981,60(8):712-716. doi: 10.1016/0016-2361(81)90224-6

    21. [21]

      LI X, BAI Z Q, BAI J, HAN Y N, KONG L X, LI W. Transformations and roles of sodium species with different occurrence modes in direct liquefaction of zhundong coal from xinjiang, northwestern china[J]. Energy Fuels, 2015,29(9):5633-5639. doi: 10.1021/acs.energyfuels.5b01138

    22. [22]

      LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian. TG analysis of coal direct liquefaction residue and its solvent extracts[J]. J Fuel Chem Technol, 2012,40(6):655-659. doi: 10.3969/j.issn.0253-2409.2012.06.003

    23. [23]

      XU J L, BAI Z Q, LI Z, GUO Z X, HAO P, BAI J, LI W. Interactions during co-pyrolysis of direct coal liquefaction residue with lignite and the kinetic analysis[J]. Fuel, 2018,215:438-445. doi: 10.1016/j.fuel.2017.11.080

    24. [24]

      LI Jun, YANG Jian-li, LIU Zhen-yu. Pyrolysis behavior of direct coal liquefaction residues[J]. J Fuel Chem Technol, 2010,38(4):385-390. doi: 10.3969/j.issn.0253-2409.2010.04.001

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    7. [7]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    9. [9]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(2)
  • Abstract views(497)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return