Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal
- Corresponding author: BAI Zong-qing, baizq@sxicc.ac.cn
Citation:
FENG Zhi-hao, XU Jun-li, HAO Pan, HOU Ran-ran, GUO Zhen-xing, BAI Jin, BAI Zong-qing, LI Wen. Physicochemical properties and pyrolysis characteristics of mild liquefaction solid product of Hami coal[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(10): 1153-1160.
SHI Shi-dong. Fundamentals of Coal Hydrogenation and Liquefaction Engineering[M]. Beijing:Chemical Industry Press, 2012.
HUANG Chuan-feng, HAN Lei, WANG Meng-yan, LI Hui-hui, YANG Fan, WANG Yong-juan, LI Da-peng, WANG Ming-feng, HUO Peng-jun, WANG Jian-qiang. Research development of properties and application of coal hydrogenation liquefaction residue[J]. Mod Chem Ind, 2016,36(6):19-23.
XU Bang, CHU Mo, ZHANG Hui-hui, WANG Fang, LIU Li-xin. Research status of direct coal liquefaction residues pyrolysis[J]. Clean Coal Technol, 2013,19(4):81-84.
LUO W J, LAN X Z, SONG Y H, FU J P. Research progress on utilization of coal liquefaction residue[J]. Mater Rev, 2013,27(6A):153-157.
CHU Xi-jie, LI Wen, BAI Zong-qing, LI Bao-qing. Pyrolysis characteristics of Shenhau direct liquefaction residue[J]. J Fuel Chem Technol, 2009,37(4):393-397. doi: 10.3969/j.issn.0253-2409.2009.04.002
LIU X, ZHOU Z J, HU Q J, DAI Z H, WANG F C. Experimental study on co-gasification of coal liquefaction residue and petroleum coke[J]. Energy Fuels, 2011,25(8):3377-3381. doi: 10.1021/ef200402z
CHU Xi-jie, LI Wen, LI Bao-qing, CHEN Hao-kan, BAI Zong-qing. Gasification characteristics of coal liquefaction residues with carbon dioxide[J]. J Fuel Chem Technol, 2006,34(2):146-150. doi: 10.3969/j.issn.0253-2409.2006.02.004
CUI Hong, YANG Jian-li, LIU Zhen-yu, BI Ji-cheng. Effects of remaining catalyst on volatile matter measurement of coal hydrogenation residue[J]. J Fuel Chem Technol, 2001,29(3):228-231. doi: 10.3969/j.issn.0253-2409.2001.03.007
GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhau coal direct liquefaction residue[J]. J China Coal Soc, 2006,31(6):785-789. doi: 10.3321/j.issn:0253-9993.2006.06.019
GU Xiao-hui, ZHOU Ming, SHI Shi-dong. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc, 2006,31(1):76-80. doi: 10.3321/j.issn:0253-9993.2006.01.017
HUANG Yong, HUANG Sheng, WU Shi-yong, WU You-qing, GAO Jin-sheng. Physic-chemical properties and low temperature pyrolysis behaviors of coal direct liquefaction residue[J]. Coal Convers, 2015,38(4):43-47. doi: 10.3969/j.issn.1004-4248.2015.04.009
LI Jun, YANG Jian-li, ZHOU Shu-fen, LI Yun-mei. Pyrolysis property of solvent extracts from a direct coal liquefaction residue[J]. J Fuel Chem Technol, 2010,38(6):647-651. doi: 10.3969/j.issn.0253-2409.2010.06.002
XU L, TANG M C, DUAN L, LIU B L, MA X X, ZHANG Y L, ARGYLE M D, FAN M H. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant[J]. Thermochim Acta, 2014,589:1-10. doi: 10.1016/j.tca.2014.05.005
WANG Z C, XUE W T, ZHU J, CHEN E S, PAN C X, KANG S G, LEI Z P, REN S B, SHUI H F. Study on the stability of hydro-liquefaction residue of Shenfu sub-bituminous coal[J]. Fuel, 2016,181:711-717. doi: 10.1016/j.fuel.2016.05.042
SONG Y H, MA Q N, HE W J, TIAN Y H, LAN X Z. A comparative study on the pyrolysis characteristics of direct-coal-liquefaction residue through microwave and conventional methods[J]. Spectrosc Spec Anal, 2018,38(4):1313-1318.
AWALLUDIN M F, SULAIMAN O, HASHIM R, NADHARI W N A W. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction[J]. Renewable Sustainable Energy Rev, 2015,50:1469-1484. doi: 10.1016/j.rser.2015.05.085
CUI H, YANG J L, LIU Z Y, BI J C. Characteristics of residues from thermal and catalytic coal hydroliquefaction[J]. Fuel, 2003,82(12):1549-1556. doi: 10.1016/S0016-2361(03)00072-3
BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Transformation of mineral matters in Yanzhou coal ash at high temperature[J]. J China Univ Min Technol, 2008,27(3):369-372. doi: 10.3321/j.issn:1000-1964.2008.03.018
MONTANO P A, VAISHNAVA P P, KING J A, EISENTROUT E N. Mossbauer study of decomposition of pyrite in hydrogen[J]. Fuel, 1981,60(8):712-716. doi: 10.1016/0016-2361(81)90224-6
LI X, BAI Z Q, BAI J, HAN Y N, KONG L X, LI W. Transformations and roles of sodium species with different occurrence modes in direct liquefaction of zhundong coal from xinjiang, northwestern china[J]. Energy Fuels, 2015,29(9):5633-5639. doi: 10.1021/acs.energyfuels.5b01138
LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian. TG analysis of coal direct liquefaction residue and its solvent extracts[J]. J Fuel Chem Technol, 2012,40(6):655-659. doi: 10.3969/j.issn.0253-2409.2012.06.003
XU J L, BAI Z Q, LI Z, GUO Z X, HAO P, BAI J, LI W. Interactions during co-pyrolysis of direct coal liquefaction residue with lignite and the kinetic analysis[J]. Fuel, 2018,215:438-445. doi: 10.1016/j.fuel.2017.11.080
LI Jun, YANG Jian-li, LIU Zhen-yu. Pyrolysis behavior of direct coal liquefaction residues[J]. J Fuel Chem Technol, 2010,38(4):385-390. doi: 10.3969/j.issn.0253-2409.2010.04.001
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
Lihui Jiang , Wanrong Dong , Hua Yang , Yongqing Xia , Hongjian Peng , Jun Yuan , Xiaoqian Hu , Zihan Zeng , Yingping Zou , Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
■: CaCO3; ▲: SiO2; ●: Fe1-xS; ○: NaCl; ▽: Al2O3·2SiO2·2H2O