Citation: MA Ya-shi, HU Xiao-fei, LIU Xia, GUO Qing-hua, YU Guang-suo. Study on ash fusion and viscosity temperature characteristics modification of Shanxi typical high aluminum coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1303-1309. shu

Study on ash fusion and viscosity temperature characteristics modification of Shanxi typical high aluminum coal

  • Corresponding author: LIU Xia, gsyu@ecust.edu.cn YU Guang-suo, lxia@ecust.edu.cn
  • Received Date: 28 July 2017
    Revised Date: 29 August 2017

    Fund Project: the National Natural Science Foundation of China 21676091The project was supported by the National Natural Science Foundation of China (21676091)

Figures(8)

  • In this work, the influences of two industrial fluxes (i.e. limestone and clay) and their composite flux on ash fusion and viscosity temperature characteristics of Shanxi typical high-alumina coals were explored, respectively. The results indicated that flow temperature of coal ash decreased with increasing additive amount of flux. Moreover, limestone exhibited a better flux effect than clay, among which the flux effect of composite flux was more obvious than that of the single fluxes. It was also found that limestone could significantly reduce the tcv of coal ash slag and clay could promote the slag type transformation towards glassy slag. Compared with single fluxes, composite flux exhibited synergistic effect on both the significant reduction of tcv and the promotion of slag type transformation. For Shanxi typical high-alumina Liangdu coal, when total amount of composite flux was 4% (2% limestone+2% clay), not only the slag transformed into glassy slag, but also tcv of the slag decreased 133 and 222 ℃ compared with single flux limestone(2%) and clay (6%), respectively. Minerals analysis results confirmed the fluxing principle of different fluxes. After the addition of composite flux, Shanxi high-alumina coals could meet the requirements of industrial entrained-flow gasifier.
  • 加载中
    1. [1]

      SAFRONOV D, FÖRSTER T, SCHWITALLA D, NIKRITYUK P, GUHL S, RICHTER A, MEYER B. Numerical study on entrained-flow gasification performance using combined slag model and experimental characterization of slag properties[J]. Fuel Process Technol, 2017,161:62-75. doi: 10.1016/j.fuproc.2017.03.007

    2. [2]

      YU Guang-suo, NIU Miao-ren, WANG Yi-fei, LIANG Qin-feng, YU Zun-hong. Application status and development tendency of coal entrained-bed gasification[J]. Mod Chem Ind, 2004,24(5):23-26.  

    3. [3]

      BAI Jin, KONG Ling-xue, LI Huai-zhu, GUO Zhen-xing, BAI Zong-qing, WEI Chi-wei, LI Wen. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. J Fuel Chem Technol, 2013,41(7):805-813.  

    4. [4]

      NINOMIYA Y, SATO A. Ash melting behavior under coal gasification conditions[J]. Energy Convers Manage, 1997,38(10):1405-1412.  

    5. [5]

      KONDRATIEV A, JAK E. Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-'FeO'-SiO2 system)[J]. Fuel, 2001,80(14):1989-2000. doi: 10.1016/S0016-2361(01)00083-7

    6. [6]

      JING N J, WANG Q H, YANG Y K, CHENG L M, LUO Z Y, CEN K F. Influence of ash composition on the sintering behavior during pressurized combustion and gasification process[J]. J Zhejiang Univ-Sci A, 2012,13(3):230-238. doi: 10.1631/jzus.A1100206

    7. [7]

      HURST H J, NOVAK F, PATTERSON J H. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes[J]. Energy Fuels, 1996,10(6):1215-1219. doi: 10.1021/ef950264k

    8. [8]

      YAO Xing-yi. Relationship of coal ash fusibility to chemical composition[J]. J Fuel Chem Technol, 1965,6(2):151-161.  

    9. [9]

      DAI Ting-kui. Study on improving ash fusibility and fluxing mechanism of high alumina coal[D]. Huainan:Anhui Univ Sci Technol, 2016.

    10. [10]

      XIAO H X, LI F H, LIU Q R, JI S H, FAN S H, FAN H L, XU M L, GUO Q Q, MA M J, MA X W. Modification of ash fusion behavior of coal with high ash fusion temperature by red mud addition[J]. Fuel, 2017,192:121-127. doi: 10.1016/j.fuel.2016.12.012

    11. [11]

      LI Wen, BAI Jin. Chemistry of Ash from Coal[M]. Beijing:Science Press, 2013.

    12. [12]

      HUANG Qian-jun. The product of base/acid and silica/alumina of ash in steal coal-An index to ash slagging tendency[J]. Power Eng, 2004,24(3):340-344.  

    13. [13]

      SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Effect of coal ash composition on ash fusion temperatures[J]. Energy Fuels, 2009,24(1):182-189.  

    14. [14]

      XU Jie, LIU Xia, ZHANG Qing, ZHAO Feng, GUO Qing-hua, WANG Fu-chen. Research on ash fusibility and viscosity-temperature characteristic of high-calcium Shanxin coal ash[J]. Proc CSEE, 2013, 33(20):46-51. 

    15. [15]

      LIU X, YU G, XU J, LIANG Q, LIU H. Viscosity fluctuation behaviors of coal ash slags with high content of calcium and low content of silicon[J]. Fuel Process Technol, 2017,158:115-122. doi: 10.1016/j.fuproc.2016.12.013

    16. [16]

      LIU Xia, LIANG Qin-feng, LIU Hai-feng, YU Guang-suo, GONG Xin. Measurement condition of coal ash viscosity-temperature characteristics[J]. J East China Univ Sci Technol:Nat Sci Ed, 2015,1004.  

    17. [17]

      DING Jia-hai. Coal adaptability experience in SE pulverized coal gasification[J]. Large Scale Nitrogenous Fertilizer Ind, 2016,39(6):361-365.  

    18. [18]

      TSURUDA A, ARMA L H, TAKEBE H. Viscosity measurement and prediction of gasified and synthesized coal slag melts[J]. Fuel, 2017,200:521-528. doi: 10.1016/j.fuel.2017.03.094

    19. [19]

      ILYUSHECHKIN A Y, HLA S S. Viscosity of high-iron slags from Australian coals[J]. Energy Fuels, 2013,27(7):3736-3742. doi: 10.1021/ef400593k

    20. [20]

      WU G, YAZHENSKIKH E, HACK K, WOSCH E, MVLLER M. Viscosity model for oxide melts relevant to fuel slags. Part 1:Pure oxides and binary systems in the system SiO2-Al2O3-CaO-MgO-Na2O-K2O[J]. Fuel Process Technol, 2015,137:93-103. doi: 10.1016/j.fuproc.2015.03.025

    21. [21]

      DAI Bai-qian, WU Xiao-jiang, CHEN Yu-shuang, ZHANG Zhong-xiao. Experimental study and quantum chemistry calculation on coal ash fusion behavior and related mineral evolution mechanism[J]. J Chin Soc Power Eng, 2014,34(1):70-76.  

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    12. [12]

      Xiang Wu Chengfeng Zhu Fang Li Bing Li Yanming Fu Lanjun Cheng Yougui Li . Cultivating the Innovative Practical Abilities of College Students Based on the OBE Concept: Taking the Applied Chemistry Major of Hefei University of Technology as an Example. University Chemistry, 2024, 39(2): 280-285. doi: 10.3866/PKU.DXHX202308040

    13. [13]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Yan Lyu Hua Qiu Yongqiang Guo Yi Yan Junwei Gu . Exploration and Practice on the Cultivation of Chemistry Professional Degree Postgraduate in Engineering University: Taking the Postgraduate Training of Materials and Chemical Engineering Major in Northwestern Polytechnical University as an Example. University Chemistry, 2024, 39(6): 83-89. doi: 10.3866/PKU.DXHX202311073

    19. [19]

      Qiuping Liu Asan Yang Jinfa Cai Ling Liu Weirong Ji Genrong Qiang . Developing a New Paradigm for Integrated Science and Education & Multidimensional Connectivity in Chemistry and Chemical Engineering Experimental Education: A Case Study at the National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Zhejiang University of Technology). University Chemistry, 2024, 39(7): 1-7. doi: 10.3866/PKU.DXHX202404001

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(1)
  • Abstract views(938)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return