Citation: LIU Fan, LIU Long-lei, XUE Da, LI Fu-xiang. Crystal transformation synthesis, hydrogenation activity and sulfur-tolerant performance of Pt particles encapsulated in sodalite[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 477-482. shu

Crystal transformation synthesis, hydrogenation activity and sulfur-tolerant performance of Pt particles encapsulated in sodalite

  • Corresponding author: LI Fu-xiang, l63f64x@163.com
  • Received Date: 13 November 2015
    Revised Date: 19 January 2016

    Fund Project: the Natural Science Foundation of Shanxi Province 2014011012-4The project was supported by the National Natural Science Foundation of China 50972097

Figures(5)

  • Noble metals are widely used as hydrogenation catalysts for refining and modifying fuel oil. However, their stability is still a problem. Thus, crystal transformation method was used here to encapsulate platinum (Pt) particles in sodalite through two steps. First, the sample was crystallized at 100 ℃ for 12 h. Then, it was further crystallized at 120 ℃ for 144 h, 130 ℃ for 96 h, 140 ℃ for 60 h, 150 ℃ for 42 h, or 160 ℃ for 30 h. The resultant solid (designated as Pt/SOD) shows high activity and excellent sulfur-tolerant performance in benzene hydrogenation. The crystalline phases were identified by X-ray diffraction technique. The hydrogen spillover effect of Pt/SOD and the spillover hydrogen acceptability of HZSM-5 were investigated with H2-TPD.
  • 加载中
    1. [1]

      BENSERADJ F, SADI F, CHATER M. Hydrogen spillover studies on diluted Rh/Al2O3 catalyst[J]. Appl Catal A: Gen, 2002,228(11):135-144.

    2. [2]

      CECKIEWICZ S, DELMON B. Cooperative action of Pt/γ-Al2O3 catalyst and γ-Al2O3 diluent in the hydrogenation of benzene[J]. J Catal, 1987,108(2):294-303. doi: 10.1016/0021-9517(87)90179-5

    3. [3]

      CHEN H, YANG H, OMOTOSO O, DING L, BRIKER Y, ZHENG Y, RING Z. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts[J]. Appl Catal A: Gen, 2009,358(2):103-109. doi: 10.1016/j.apcata.2008.12.045

    4. [4]

      CHEN S, CHEN J, GIELECIAK R, FAIRBRIDGE C. Reactivity characteristics of Pt-encapsulated zeolite catalysts for hydrogenation and hydrodesulfurization[J]. Appl Catal A: Gen, 2012,415-416:70-79. doi: 10.1016/j.apcata.2011.12.005

    5. [5]

      CHOI M, WU Z, IGLESIA E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation[J]. J Am Chem Soc, 2010,132(26):9129-9137. doi: 10.1021/ja102778e

    6. [6]

      FLANIGEN E M, BENNETT J M, GROSE R W, COHEN J P, PATTON R L, KIRCHNER R M. Silicalite, a new hydrophobic crystalline silica molecular sieve[J]. Nature, 1978,271:512-516. doi: 10.1038/271512a0

    7. [7]

      GOEL S, WU Z, ZONES S I, IGLESIA E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites[J]. J Am Chem Soc, 2012,134(42):17688-17695. doi: 10.1021/ja307370z

    8. [8]

      CONNER W C, FALCONER J L. Spillover in heterogeneous catalysis[J]. Chem Rev, 1995,95:759-788. doi: 10.1021/cr00035a014

    9. [9]

      GOTTI A, PRINS R. Basic metal oxides as co-catalysts in the conversion of synthesis gas to methanol on supported palladium catalysts[J]. J Catal, 1998,175(2):302-311. doi: 10.1006/jcat.1998.1996

    10. [10]

      GREER H, WHEATLEY P S, ASHBROOK S E, MORRIS R E, ZHOU W. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite[J]. J Am Chem Soc, 2009,131(49):17986-17992. doi: 10.1021/ja907475z

    11. [11]

      GUCZI L, KIRICSI I. Zeolite supported mono-and bimetallic systems: Structure and performance as CO hydrogenation catalysts[J]. Appl Catal A: Gen, 1999,186(1/2):375-394.  

    12. [12]

      KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles[J]. J Phys Chem, 1964,68(2):411-412. doi: 10.1021/j100784a503

    13. [13]

      OHGOSHI S, NAKAMURA I, WAKUSHIMA Y. Hydrogenation of isobutylene by spillover hydrogen from Pt/KA-zeolite to NaY-zeolite[J]. Stud Surf Sci Catal, 1993,77:289-292. doi: 10.1016/S0167-2991(08)63193-6

    14. [14]

      REAGAN W J, CHESTER A W, KERR G T. Studies of the thermal decomposition and catalytic properties of some platinum and palladium ammine zeolites[J]. J Catal, 1981,69(1):89-100. doi: 10.1016/0021-9517(81)90131-7

    15. [15]

      REED T B, BRECK D W. Crystalline zeolites.Ⅱ: Crystal structure of synthetic zeolite, type A[J]. J Am Chem Soc, 1956,78(23):5972-5977. doi: 10.1021/ja01604a002

    16. [16]

      SACHTLER W M H. Metal clusters in zeolites: An intriguing class of catalysts[J]. Chem Res, 1993,26(7):383-387. doi: 10.1021/ar00031a005

    17. [17]

      SINFELT J H, LUCCHESI P J. Kinetic evidence for the migration of reactive intermediates in surface catalysis[J]. J Am Chem Soc, 1963,85(21):3365-3367. doi: 10.1021/ja00904a012

    18. [18]

      SONG G, LIU H, LI F, LV Z, XUE J. Synthesis and characterization of LTA zeolite with uniform intracrystal mesopores directed by bridged polysilsesquioxane monomer[J]. J Porous Mater, 2014,21(6):1101-1111. doi: 10.1007/s10934-014-9860-1

    19. [19]

      SRINIVAS S T, RAO P K. Direct observation of hydrogen spillover on carbon-supported platinum and its influence on the hydrogenation of benzene[J]. J Catal, 1994,148(2):470-477. doi: 10.1006/jcat.1994.1233

    20. [20]

      WEISE P B, FRILETTE V J, MOWER E B, MAATMAN R W. Catalysis by crystalline aliminosilicates Ⅱ: Molecular-shape selective reactions[J]. J Catal, 1962,1(4):307-312. doi: 10.1016/0021-9517(62)90058-1

    21. [21]

      YANG H, CHEN H, CHEN J, OMOTOSO O, RING Z. Shape selective and hydrogen spillover approach in the design of sulfur-tolerant hydrogenation catalysts[J]. J Catal, 2006,243(1):36-42. doi: 10.1016/j.jcat.2006.06.026

    22. [22]

      YANG H, CHEN H, DU H, HAWKINS R, CRAIG F, RING Z, OMOTOSO O, MUNOZ V, MIKULA R. Incorporating platinum precursors into a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite[J]. Microprous Mesprous Mater, 2009,117(1):33-40.  

    23. [23]

      ZHAN B Z, IGLESIA E. RuO2 clusters within LTA zeolite cages: Consequences of encapsulation on catalytic reactivity and selectivity[J]. Chem Int Ed, 2007,46(20):3697-3700. doi: 10.1002/(ISSN)1521-3773

    24. [24]

      ZHAN B Z, WHITE M A, SHAM T K, PINCOCK J A, DOUCET R J, RAMANA RAO K V, ROBERTSON K N, CAMERON T S. Zeolite-Confined Nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation[J]. J Am Chem Soc, 2003,125(8):2195-2199. doi: 10.1021/ja0282691

    25. [25]

      ZLOTEA C, CAMPESI R, CUEVAS F, LEROY E, DIBANDJO P, VOLKRINGER C, LOISEAU T, FEREY G, LATROCHE M. Size-dependent hydrogen sorption in ultrasmall Pd clusters embedded in a mesoporous carbon template[J]. J Am Chem Soc, 2010,132(22):2991-2997.  

    26. [26]

      ZHIJIE W, SARIKA G, MINKEE C, ENRIQUE I. Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity[J]. J Catal, 2014,311:458-468. doi: 10.1016/j.jcat.2013.12.021

    27. [27]

      SONGHYUN L, KYUNGHO L, JUHWAN I, HYUNGJUN K, MINKEE C. Revisiting hydrogen spillover in Pt/LTA: Effects of physical diluents having different acid site distributions[J]. J Catal, 2015,325:26-34. doi: 10.1016/j.jcat.2015.02.018

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    4. [4]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    5. [5]

      Xia LiYandie LiuZhenglin DuQiangsheng ZhangQing ChenJialin XieKelong Zhu . Bowl-in-bowl encapsulation of corannulene by herteroatom-bridged nanobelts. Chinese Chemical Letters, 2025, 36(5): 110249-. doi: 10.1016/j.cclet.2024.110249

    6. [6]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    12. [12]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    13. [13]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    14. [14]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    15. [15]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    16. [16]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    17. [17]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    18. [18]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    19. [19]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    20. [20]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

Metrics
  • PDF Downloads(1)
  • Abstract views(961)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return