Citation: YANG Jia-ke, ZUO Tong-jiu, LU Yu-ying, ZENG Wu-song, LU Jiang-yin. Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1053-1066. shu

Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar

  • Corresponding author: LU Jiang-yin, jiangyinlu6410@163.com
  • Received Date: 28 May 2019
    Revised Date: 4 July 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21366030)the National Natural Science Foundation of China 21366030

Figures(15)

  • A series of NiMo/Al2O3-USY catalysts with different MoO3 contents were prepared through incipient wetness method and further modified with NH4F. The NiMo/Al2O3-USY catalysts were characterized by XRD, XPS, HR-TEM, NH3-TPD, H2-TPR and N2 adsorption and their catalytic performance in the hydrocracking of low-temperature coal tar (LTCT) was investigated in a 200 mL fixed-bed reactor. The results indicate that the appropriate MoO3 content is 15% (mass ratio); higher MoO3 content may lead to the agglomeration of active metals on the support, although it has little influence on the sulfidation degree of Mo species and the conversion of coal tar upon hydrocracking. In addition, the amount of strong acid sites and pore diameter decrease gradually with a further increase in the MoO3 content, which is disadvantageous for deep hydrocracking. The modification of USY zeolite with NH4F solution can enlarge the average pore diameter of resultant NiMo/Al2O3-USY catalysts and then improve the residue conversion of coal tar. However, the amount of strong acid sites decreases obviously when the concentration of NH4F solution exceeds 0.6 mol/L, which may lead to an increase of the sulfur content in the hydrocracking product. Over the NiMo/Al2O3-USY catalyst modified with 0.6 mol/L NH4F solution, the residue conversion of coal tar reaches 87.65%; the sulfur contents in the gasoline fraction (< 180 ℃) and diesel fraction (180-320 ℃) are 5.96 and 34.98 mg/kg, respectively.
  • 加载中
    1. [1]

      YAN Lun-jing. Analysis on converting gaseous tar to light arenes by catalytic cracking[D]. Taiyuan: Taiyuan University of Technology, 2016. 

    2. [2]

      SUN J M, LI D, YAO R Q, SUN Z H, LI X K, LI W H. Modeling the hydrotreatment of full range medium temperature coal tar by using a lumping kinetic approach[J]. React Kinet Mech Catal, 2015,114(2):451-471. doi: 10.1007/s11144-014-0791-2

    3. [3]

      MA Bao-qi. Preparation of Fuel Oil from Coal Tar[M]. Beijing:Chemical Industry Press, 2011.

    4. [4]

      CUI W G, ZHENG H A, NIU M L, ZHANG S J, LI D, QIAO J, LI W H. Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts[J]. React Kinet Mech Catal, 2016,119(2):491-509. doi: 10.1007/s11144-016-1068-8

    5. [5]

      XIA Liang-yan. Study on hydroprocessing technology and catalysts of LTCT from polygeneration[D]. Hangzhou: Zhejiang University, 2015. 

    6. [6]

      FENG X, LI D, CHEN J H, NIU M L, LIU X, LESTER L T, LI W H. Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of whole fraction low-temperature coal tar[J]. Fuel, 2018,230:113-125. doi: 10.1016/j.fuel.2018.05.023

    7. [7]

      ZHANG Shi-wan. Study on light-end products of coal tar with catalytic hydrogenation and catalyst[D]. Shanghai: East China University of Science and Technology, 2012. 

    8. [8]

      ZHANG H Y, CHEN G W, BAI L, CHANG N, WANG Y G. Selective hydrogenation of aromatics in coal-derived liquids over novel NiW and NiMo carbide catalysts[J]. Fuel, 2019,244:359-365. doi: 10.1016/j.fuel.2019.02.015

    9. [9]

      VAN N B, DOROTHEE L, PAVEL A, CHRISTOPHE G. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part Ⅰ:Promoting effect of cobalt on HDO selectivity and activity[J]. Appl Catal B:Environ, 2011,101(3/4):239-245.

    10. [10]

      ZHANG D Q, DUAN A J, ZHAO Z, WANG X Q, JIANG G Y, LIU J, WANG C Y. Synthesis, characterization and catalytic performance of meso-microporous material Beta-SBA-15-supported NiMo catalysts for hydrodesulfurization of dibenzothiophene[J]. Catal Today, 2011,175(1):477-484. doi: 10.1016/j.cattod.2011.03.060

    11. [11]

      XU Nan, LIANG Nai-sen, ZHANG Shun-guang, DUAN Yan, HOU Kai-hu. Synthesis of β-MCM-41 and its application in gasoline isomerization/hydrodesulfurization[J]. Acta Pet Sin(Pet Process Sect), 2012,28(6):913-919. doi: 10.3969/j.issn.1001-8719.2012.06.005

    12. [12]

      MENG J P, WANG Z Y, MA Y H, LU J Y. Hydrocracking of low-temperature coal tar over NiMo/Beta-KIT-6 catalyst to produce gasoline oil[J]. Fuel Process Technol, 2017,165:62-71. doi: 10.1016/j.fuproc.2017.05.009

    13. [13]

      KAZAKOV M O, NADEINA K A, DANILOVA I G, DIK P P, KLIMOV O V, PEREYMA V Y, PAUKSHTIS E A, GOLUBEV I S, PROSVIRIN I P, GERASIMOV E Y, DOBRYAKOVA I V, KNYAZEVA E E, IVANOVA I I, NOSKOV A S. Influence of USY zeolite recrystallization on physicochemical properties and catalytic performance of NiMo/USY-Al2O3 hydrocracking catalysts[J]. Catal Today, 2019,329:108-115. doi: 10.1016/j.cattod.2019.01.003

    14. [14]

      RAYO P, TORRES M P, CENTENTO G, FERNANDO A, JOSE A D, ANCHEYTA J. Effect of silicon incorporation method in the supports of NiMo catalysts for hydrotreating reactions[J]. Fuel, 2019,239:1293-1303. doi: 10.1016/j.fuel.2018.10.102

    15. [15]

      FERRAZ S, ZOTIN F, ARAUJO L. Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin[J]. Appl Catal A:Gen, 2010,384(1):51-57.  

    16. [16]

      CHEN Song, XU Jie, YANG Yong-rong, WANG Jing-dai, ZHANG Xiao-ping, ZHANG Kui-xi. Nanometer β zeolite made from mesoporous zeolite and its hydrocracking performance[J]. Chin J Catal, 2006,27(3):255-258. doi: 10.3321/j.issn:0253-9837.2006.03.013

    17. [17]

      ZHANG Xue-jun, WANG Zong-xian, GUO Ai-jun, YUAN Zong-sheng, WANG Fu-cun. Modification of zeolite Y for preparation of the maxinizing middle distillates hydrocracking catalyst[J]. J Fuel Chem Technol, 2008,36(5):606-609. doi: 10.3969/j.issn.0253-2409.2008.05.017

    18. [18]

      SHALI N B, SUGUNAN S. Influence of transition metals on the surface acidic properties of titania prepared by sol-gel route[J]. Mater Res Bull, 2007,42(9):1777-1783. doi: 10.1016/j.materresbull.2006.11.016

    19. [19]

      RAJAGOPAL S, MARZARI J A, MIRANDA R. Silica-alumina-supported Mo oxide catalysts:Genesis and demise of Brønsted-Lewis acidity[J]. J Catal, 1995,151(1):192-203. doi: 10.1006/jcat.1995.1021

    20. [20]

      JOSE E, MARIA C B, ANA W G, MARIA A, CORTES J, CARLOS A C, JOSE A T. Highly active P-doped sulfided NiMo/alumina HDS catalysts from Mo-blue by using saccharose as reducing agents precursor[J]. Appl Catal B:Environ, 2018,237:708-720. doi: 10.1016/j.apcatb.2018.06.034

    21. [21]

      KLIMOV O V, NADEINA K A, DIK P P, KORYAKINA G I, PEREYMA V Y, KAZAKOV M O, BUDUKVA S V, GERASIMOV E Y, PROSVIRIN I P, KOCHUBEY D I, NOSKOV A S. CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil[J]. Catal Today, 2016,271:56-63. doi: 10.1016/j.cattod.2015.11.004

    22. [22]

      MENG Xin-xin, QIU Ze-gang, GUO Xing-mei, LI Zhen-rong, HU Nai-fang, SONG Mao-ning, ZHAO Liang-fu. Hydrodenitrogenation and hydrodesulfurization of coal tar on Ni-W catalysts with different metal loadings[J]. J Fuel Chem Technol, 2016,44(5):570-578. doi: 10.3969/j.issn.0253-2409.2016.05.009

    23. [23]

      BERIT H, N R J K, HENRSK T E. A density functional study of the chemical differences between Type Ⅰ and Type Ⅱ MoS2-based structures in hydrotreating catalysts[J]. J Phys Chem B, 2005,109(6):2245-2253. doi: 10.1021/jp048842y

    24. [24]

      YIN H L, ZHOU T N, LLU Y Q, CHAI Y M, LIU C G. NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel[J]. J Nat Gas Chem, 2011,20(4):441-448. doi: 10.1016/S1003-9953(10)60204-6

    25. [25]

      YU F, HAN X, GANG S, LIU H Y, QIAN Y, WANG T H, GONG G B, BAO X J. Citrc acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal, 2011,279(5):27-35.

    26. [26]

      FANG Xiang-chen. Hydrocracking[M]. Beijing:China Petrochemical Press, 2008.

    27. [27]

      ZHANG Deng-qian. Synthesis of meso-microporous composite materials and their applications in the catalysts for the hydrodesulfurization of diesel[D]. Beijing: China University of Petroleum, 2010. 

    28. [28]

      REN Liang, MAO Yi-chao, LIU Kun-hong, NIE Hong. Hydrocracking of decane on different acidity Y zeolite catalysts[J]. Acta Pet Sin(Pet Process Sect), 2009,25(1):31-35. doi: 10.3969/j.issn.1001-8719.2009.01.006

    29. [29]

      AROLDY P, JONGE J C M D, MOULIJNN J A. Temperature-programed reduction of molybdenum(Ⅵ) oxide and molybdenum(Ⅳ) oxide[J]. J Phys Chem, 1985,89(21):4517-4526. doi: 10.1021/j100267a021

    30. [30]

      HENKER M, WENDLANDT K P, VALYON J, BORNMANN P. Structure of MoO3/Al2O3-SiO2 catalysts[J]. Appl Catal, 1991,69(1):205-220. doi: 10.1016/S0166-9834(00)83303-5

    31. [31]

      SHEILA G A, FATIMA M, LUCIA R, RADDI A, JOSE L Z. Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin[J]. Appl Catal A:Gen, 2010,384(1/2):51-57.  

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    4. [4]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    13. [13]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(11)
  • Abstract views(1053)
  • HTML views(295)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return