Citation: ZHAO Tian-qi, GAO Qiang, LIAO Wei-ping, XU Xiu-feng. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1120-1128. shu

Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition

  • Corresponding author: XU Xiu-feng, xxf@ytu.edu.cn
  • Received Date: 6 May 2019
    Revised Date: 10 July 2019

    Fund Project: The project was supported by the Shandong Natural Science Foundation (ZR2017MB020) and Graduate Innovation Foundation of Yantai University (YDYB1909)the Shandong Natural Science Foundation ZR2017MB020Graduate Innovation Foundation of Yantai University YDYB1909

Figures(13)

  • Nd-Co3O4 catalysts were prepared by hydrothermal and co-precipitation methods to catalyze the decomposition of N2O. The catalysts prepared by hydrothermal method showed higher activity. Among the hydrothermal Nd-Co3O4 catalysts, the catalyst with Nd/Co molar ratio of 0.01 had higher activity. 0.01Nd-Co3O4 catalyst was then impregnated by K2CO3 solution to prepare K-modified catalyst. The catalysts were characterized by means of X-ray diffraction (XRD), nitrogen physisorption, scanning electrons microscopy (SEM), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), and oxygen temperature-programmed desorption (O2-TPD). The results show that Nd-Co3O4 and K-modified catalysts exhibit spinel structure. In contrast to bare Nd-Co3O4, the K-modified catalyst with higher activity is due to its weaker strength of Co-O bond and easier desorption of surface oxygen species. In addition, over 90% conversion of N2O can be reached over 0.02K/0.01Nd-Co3O4 at 350 ℃ for 40 h under the co-presence of oxygen and steam in feed gases.
  • 加载中
    1. [1]

      REILLY J, PRINN R, HARNISCH J, FITZMAURICE J, JACOBY H, KICKLIGHTER D, MELILLO J, STONE P, SOKOLOV A, WANG C. Multi-gas assessment of the Kyoto Protocol[J]. Nature, 1999,401:549-555. doi: 10.1038/44069

    2. [2]

      SHEN Q, LI L D, LI J J, TIAN H, HAO Z P. A study on N2O catalytic decomposition over Co/MgO catalysts[J]. J Hazard Mater, 2009,163:1332-1337. doi: 10.1016/j.jhazmat.2008.07.104

    3. [3]

      YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4(M=Ni, Mg) spinel oxides[J]. Appl Catal B:Environ, 2003,45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7

    4. [4]

      IVANOVA Y A, SUTORMINA E F, ISUPOVA L A, ROGOV V A. Effect of the composition of NixCo3-xO4(x=0-0.9) oxides on their catalytic activity in the low-temperature reaction of N2O decomposition[J]. Kinet Catal, 2018,59(3):365-370.  

    5. [5]

      DOU Z, ZHANG H J, PAN Y F, XU X F. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5

    6. [6]

      FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-x O4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015,176/177:298-305. doi: 10.1016/j.apcatb.2015.04.002

    7. [7]

      WANG Y Z, HUO X B, ZHANG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018,111:70-74. doi: 10.1016/j.catcom.2018.04.004

    8. [8]

      TURSUN M, WANG X P, ZHANG F, YU H B. Bi-Co3O4 catalyzing N2O decomposition with strong resistance to CO2[J]. Catal Commun, 2015,65:1-5. doi: 10.1016/j.catcom.2015.02.013

    9. [9]

      YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B:Environ, 2016,185:110-118. doi: 10.1016/j.apcatb.2015.12.011

    10. [10]

      YU H B, WANG X P, WU X X, CHEN Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018,334:800-806. doi: 10.1016/j.cej.2017.10.079

    11. [11]

      KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017,422:202-207.  

    12. [12]

      XUE L, HE H, LIU C, ZHANG C B, ZHANG B. Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition[J]. Environ Sci Technol, 2009,43(3):890-895. doi: 10.1021/es801867y

    13. [13]

      YOU Y, CHANG H, MA L, GUO L, QIN X, LI J Y, LI J H. Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst[J]. Chem Eng J, 2018,347:184-192. doi: 10.1016/j.cej.2018.04.081

    14. [14]

      ABUZIED B M, BAWAKED S M, KOSA S A, SCHWIEGER W. Effect of Pr, Sm, and Tb doping on the morphology, crystallite size, and N2O decomposition activity of Co3O4 nanorods[J]. J Nanomater, 2015,56(12):1417-1423.  

    15. [15]

      ZHAO T Q, GAO Q, LI H J, XU X F. Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method[J]. J Fuel Chem Technol, 2019,47(4):446-454. doi: 10.1016/S1872-5813(19)30021-0

    16. [16]

      LI Yan, ZOU Xiao-ling, ZHANG Shu-heng, ZHANG Xiang-jun, WANG Hong, LI Cui-qing, SONG Yong-ji. Catalytic decomposition of N2O on M0.5Co2.5O4(M=La, Ce, Pr, Nd) spinel oxides catalysts[J]. Ind Catal, 2017,25(4):28-33. doi: 10.3969/j.issn.1008-1143.2017.04.005

    17. [17]

      WANG Tao, WANG Hong, LI Cui-qing, SONG Yong-ji, DING Fu-chen. N2O decomposition over Co/Hβ catalysts doped with rare-earth metals[J]. Environ Chem, 2012,31(2):157-161.  

    18. [18]

      ABU-ZIED B M, BAWAKED S M, KOSA S A, ALI T T, SCHWIEGER W, AQLAN F M. Effects of Nd-, Pr-, Tb-and Y-doping on the structural, textural, electrical and N2O decomposition activity of mesoporous NiO nanoparticles[J]. Appl Surf Sci, 2017,419:399-408. doi: 10.1016/j.apsusc.2017.05.040

    19. [19]

      ABU-ZIED B M, BAWAKED S M, KOSA S A, SCHWIEGER W. Impact of Gd-, La-, Nd-and Y-doping on the textural, electrical conductivity and N2O decomposition activity of CuO catalyst[J]. Int J Electrochem Sci, 2016,11:2230-2246.

    20. [20]

      XUE Z W, SHEN Y S, SHEN S B, LI C L, ZHU S M. Promotional effects of Ce4+, La3+ and Nd3+ incorporations on catalytic performance of Cu-Fe-Ox for decomposition of N2O[J]. J Ind Eng Chem, 2015,30:98-105. doi: 10.1016/j.jiec.2015.05.008

    21. [21]

      LI H J, ZHENG L, ZHAO T Q, XU X F. Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O[J]. J Fuel Chem Technol, 2018,46(6):717-724. doi: 10.1016/S1872-5813(18)30031-8

    22. [22]

      PAN Y F, FENG M, CUI X, XU X F. Catalytic activity of alkali metal doped Cu-Al mixed oxides for N2O decomposition in the presence of oxygen[J]. J Fuel Chem Technol, 2012,40(5):601-607. doi: 10.1016/S1872-5813(12)60024-3

    23. [23]

      STELMACHOWSKI P, MANIAK G, KOTARBA A, SOJKA Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J]. Catal Commun, 2009,10(7):1062-1065. doi: 10.1016/j.catcom.2008.12.057

    24. [24]

      ZHENG Ke, WANG Yong-zhao, HU Xu-bo, WU Rui-fang, LIU Xiao-li, ZHAO Yong-xiang. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. J Fuel Chem Technol, 2019,47(4):455-463.  

    25. [25]

      YAO X J, CAO J, CHEN L, KANG K K, CHEN Y, TIAN M, YANG F M. Doping effect of cations (Zr4+, Al3+, and Si4+) on MnOx/CeO2 nano-rod catalyst for NH3-SCR reaction at low temperature[J]. Chin J Catal, 2019,40(5):733-743. doi: 10.1016/S1872-2067(18)63204-8

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    2. [2]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    3. [3]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    4. [4]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    5. [5]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    6. [6]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    7. [7]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    11. [11]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    12. [12]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    13. [13]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    14. [14]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    15. [15]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    16. [16]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    17. [17]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    18. [18]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    19. [19]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(4)
  • Abstract views(803)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return