Effects of ZrO2 and Al2O3 on the performance of Mo-based catalysts in methanation
- Corresponding author: LIN Ming-gui, linmg@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
Citation:
ZHANG Kai, LIN Ming-gui, LU Huai-qian, HOU Bo, WANG Jun-gang, JIA Li-tao, LI De-bao. Effects of ZrO2 and Al2O3 on the performance of Mo-based catalysts in methanation[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(7): 854-862.
LAI W, SONG W, PANG L, WU Z, ZHENG N, LI J, ZHENG J, YI X, FANG W. The effect of starch addition on combustion synthesis of NiMo-Al2O3 catalysts for hydrode sulfurization[J]. J Catal, 2013,303:80-91. doi: 10.1016/j.jcat.2013.03.001
HENSLEY J E, PYLYPENKO S, RUDDY D A. Deactivation and stability of K-CoMoSx mixed alcohol synthesis catalysts[J]. J Catal, 2014,309:199-208. doi: 10.1016/j.jcat.2013.10.001
SANTOS V P, LINDEN B, CHOJECKI A, BUDRONI G, CORTHALS S, SHIBATA H, MEIMA G R, KAPTEIJN F, MAKKEE M, GASCON J. Mechanistic insight into the synthesis of higher alcohols from syngas:The role of K promotion on MoS2 catalysts[J]. ACS Catal, 2013,3(7):1634-1637. doi: 10.1021/cs4003518
SASAKI T, SUZUKI T, TAKAOKA M. Reaction selectivity to hydrocarbons and solid-state carbon over molybdenum sulfide-based shift catalyst[J]. Appl Catal A:Gen, 2016,514:83-90. doi: 10.1016/j.apcata.2015.11.049
SINGH R, KUNZRU D, SIVAKUMAR S. Co-promoted MoO3 nanoclusters for hydrode sulfurization[J]. Catal Sci Technol, 2016,6(15):5949-5960. doi: 10.1039/C5CY02221E
WANG B, DING G, SHANG Y, LV J, WANG H, WANG E, LI Z, MA X, QIN S, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A:Gen, 2012,431/432:144-150. doi: 10.1016/j.apcata.2012.04.029
LI Z, TIAN Y, HE J, WANG B, MA X. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst[J]. J Energy Chem, 2014,23(5):625-632. doi: 10.1016/S2095-4956(14)60193-5
GAO J J, LIU Q, GU F N, LIU B, ZHONG Z Y, SU F B. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. Rsc Adv, 2015,5(29):22759-22776. doi: 10.1039/C4RA16114A
WANG Z Z, HAN W F, LIU H Z. Hydrothermal synthesis of sulfur-resistant MoS2 catalyst for methanation reaction[J]. Catal Commun, 2016,84:120-123. doi: 10.1016/j.catcom.2016.06.016
LIU Zhen, WANG Bao-wei, WANG Wei-han, MENG Da-jun, LI Zhen-hua, MA Xin-bin. Impact of B2O3 loading on sulfur-resistant methanation activity of MoO3/CeO2-Al2O3 catalys[J]. CIESC J, 2016,67(9):3672-3677.
LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. J Fuel Chem Technol, 2016,44(8):985-992.
DA SILVA D, LETICHEVSKY S, BORGES L, APPEL L. The Ni/ZrO2 catalyst and the methanation of CO and CO2[J]. Int J Hydrogen Energy, 2012,37:8923-8928. doi: 10.1016/j.ijhydene.2012.03.020
SHARMA S, KUMAR K, CHANDNANI Y, KUMAR V, GANGWAR B, SINGHAL A, DESHPANDE P. Mechanistic insights into CO2 methanation over Ru-substituted CeO2[J]. J Phys Chem C, 2016,120(26):14101-14112. doi: 10.1021/acs.jpcc.6b03224
QIN Shao-dong, LONG Jun-ying, TIAN Da-yong, WANG Guo-gao, YANG Xia, SUN Shou-li, SUN Qi. Supported Mo-based catalysts with different carriers for methanation[J]. Ind Catal, 2014,22(10):770-774. doi: 10.3969/j.issn.1008-1143.2014.10.008
KIM M Y, HA S B, KOH D J, BYUN C, PARK E D. CO methanation over supported Mo catalysts in the presence of H2S[J]. Catal Commun, 2013,35:68-71. doi: 10.1016/j.catcom.2013.02.004
RAZZAQ R, LI C, USMAN M, SUZUKI K, ZHANG S. A highly active and stable Co4N/gamma-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)[J]. Chem Eng J, 2015,262:1090-1098. doi: 10.1016/j.cej.2014.10.073
RAZZAQ R, ZHU H W, JIANG L, MUHAMMAD U, LI C S, ZHANG S J. Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2[J]. Ind Eng Chem Res, 2013,52:2247-2256. doi: 10.1021/ie301399z
LIU J, WANG E, LV J, LI Z, WANG B, MA X, QIN S, SUN Q. Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation[J]. Fuel Process Technol, 2013,110:249-257. doi: 10.1016/j.fuproc.2013.01.003
KATTEL S, YU W, YANG X, YAN B, HUANG Y, WAN W, LIU P, CHEN J G. CO2 hydrogenation over oxide-supported PtCo catalysts:The role of the oxide support in determining the product selectivity[J]. Angew Chem Int Ed, 2016,55:7968-7973. doi: 10.1002/anie.201601661
El-SHARKAWY E A, KHDER A S, AHMED A I. Structural characterization and catalytic activity of molybdenum oxide supported zirconia catalysts[J]. Microporous Mesoporous Mater, 2007,102(1/3):128-137.
CUI F, LI G, LI X, LUA M, LI M. Enhancement of hydrodesulfurization of 4, 6-dimethyldibenzothiophene catalyzed by CoMo catalysts supported on carbon-covered gamma-Al2O3[J]. Catal Sci Technol, 2015,5(1):549-555. doi: 10.1039/C4CY00814F
DINTER N, RUSANEN M, RAYBAUD P, KASZTELAN S, SILVA P, TOULHOAT H. Temperature-programmed reduction of unpromoted MoS2-based hydrodesulfurization catalysts:First-principles kinetic monte carlo simulations and comparison with experiments[J]. J Catal, 2010,275:117-128. doi: 10.1016/j.jcat.2010.07.020
AFANASIEV P. Calculation of MoS2 slabs morphology descriptors from transmission electron microscopy data revisited. Case study of the influence of citric acid and treatment conditions on the properties of MoS2/Al2O3[J]. Appl Catal A:Gen, 2017,529:10-19. doi: 10.1016/j.apcata.2016.10.008
LI H F, LI M F, CHU Y, LIU F, NIE H. Effect of different preparation methods of MoO3/Al2O3 catalysts on the existing states of Mo species and hydrode sulfurization activity[J]. Fuel, 2014,116:168-174. doi: 10.1016/j.fuel.2013.07.127
QIU L M, XU G T. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci, 2010,256:3413-3417. doi: 10.1016/j.apsusc.2009.12.043
LI H F, LI M F, NIE H. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous Mesoporous Mater, 2014,188:30-36. doi: 10.1016/j.micromeso.2014.01.003
NIKULSHIN P A, ISHUTENKO D I, MOZHAEV A A, MASLAKOV K I, PIMERZIN A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions[J]. J Catal, 2014,312:152-169. doi: 10.1016/j.jcat.2014.01.014
GAO D, DUAN A, ZHANG X, ZHAO Z, HONG E, LI J, WANG H. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS[J]. Appl Catal B:Environ, 2015,165:269-284. doi: 10.1016/j.apcatb.2014.10.034
HU K H, HU X G, XU Y F, PAN X Z. The effect of morphology and size on the photocatalytic properties of MoS2[J]. React Kinet Mech Catal, 2010,100(1):153-163.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
(a): CO and CO2 conversion; (b): COx conversion and CH4 selectivity reaction conditions: H2:CO:CO2=1.4:0.8:1, φ=0.3% H2S, GHSV=5 000 h-1, 3 MPa ▲: Mo/Al2O3; ■: Mo/ZrO2
(a): CO conversion; (b): CH4 and CO2 selectivity reaction conditions: H2:CO =3:1, φ=0.3% H2S, GHSV=5 000 h-1, 3 MPa ▲: Mo/Al2O3; ■: Mo/ZrO2
(a): CO2 conversion; (b): CH4 and CO selectivity reaction conditions: H2:CO2 =4:1, φ=0.3% H2S, GHSV=5 000 h-1, 3 MPa ▲: Mo/Al2O3; ■: Mo/ZrO2
(a): Al2O3 and corresponding catalysts; (b): ZrO2 and corresponding catalysts the symbols of ●, ♦and □ denote MoO3, monoclinic phase ZrO2 and tetragonal phase ZrO2, respectively ●: MoO3; ♦: m-ZrO2; □: t-ZrO2
(a): oxidized catalysts; (b): sulfurized catalysts
(a), (b): fresh catalysts; (c), (d): used catalysts