Citation: ZHANG Kai, LIN Ming-gui, LU Huai-qian, HOU Bo, WANG Jun-gang, JIA Li-tao, LI De-bao. Effects of ZrO2 and Al2O3 on the performance of Mo-based catalysts in methanation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 854-862. shu

Effects of ZrO2 and Al2O3 on the performance of Mo-based catalysts in methanation

Figures(7)

  • Mo/ZrO2 and Mo/Al2O3 catalysts with a MoO3 loading of 5% were prepared by incipient wetness impregnation method; the effect of support on the performance of Mo-based catalysts in methanation was then investigated in three different feeds. The results indicate that ZrO2 as a support can promote the methanation and water-gas shift (WGS) reaction. ZrO2 is beneficial to the sulfuration and reduction of MoO3. The Mo sulfidation degree and the content of Mo4+ on Mo/ZrO2 are higher than that on Mo/Al2O3. Besides, the curved MoS2 basal plane on Mo/ZrO2 can provide the active sites for methanation and WGS, which is effective to enhance the performance of Mo-based catalysts in methanation.
  • 加载中
    1. [1]

      LAI W, SONG W, PANG L, WU Z, ZHENG N, LI J, ZHENG J, YI X, FANG W. The effect of starch addition on combustion synthesis of NiMo-Al2O3 catalysts for hydrode sulfurization[J]. J Catal, 2013,303:80-91. doi: 10.1016/j.jcat.2013.03.001

    2. [2]

      HENSLEY J E, PYLYPENKO S, RUDDY D A. Deactivation and stability of K-CoMoSx mixed alcohol synthesis catalysts[J]. J Catal, 2014,309:199-208. doi: 10.1016/j.jcat.2013.10.001

    3. [3]

      SANTOS V P, LINDEN B, CHOJECKI A, BUDRONI G, CORTHALS S, SHIBATA H, MEIMA G R, KAPTEIJN F, MAKKEE M, GASCON J. Mechanistic insight into the synthesis of higher alcohols from syngas:The role of K promotion on MoS2 catalysts[J]. ACS Catal, 2013,3(7):1634-1637. doi: 10.1021/cs4003518

    4. [4]

      SASAKI T, SUZUKI T, TAKAOKA M. Reaction selectivity to hydrocarbons and solid-state carbon over molybdenum sulfide-based shift catalyst[J]. Appl Catal A:Gen, 2016,514:83-90. doi: 10.1016/j.apcata.2015.11.049

    5. [5]

      SINGH R, KUNZRU D, SIVAKUMAR S. Co-promoted MoO3 nanoclusters for hydrode sulfurization[J]. Catal Sci Technol, 2016,6(15):5949-5960. doi: 10.1039/C5CY02221E

    6. [6]

      WANG B, DING G, SHANG Y, LV J, WANG H, WANG E, LI Z, MA X, QIN S, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A:Gen, 2012,431/432:144-150. doi: 10.1016/j.apcata.2012.04.029

    7. [7]

      LI Z, TIAN Y, HE J, WANG B, MA X. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst[J]. J Energy Chem, 2014,23(5):625-632. doi: 10.1016/S2095-4956(14)60193-5

    8. [8]

      GAO J J, LIU Q, GU F N, LIU B, ZHONG Z Y, SU F B. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. Rsc Adv, 2015,5(29):22759-22776. doi: 10.1039/C4RA16114A

    9. [9]

      WANG Z Z, HAN W F, LIU H Z. Hydrothermal synthesis of sulfur-resistant MoS2 catalyst for methanation reaction[J]. Catal Commun, 2016,84:120-123. doi: 10.1016/j.catcom.2016.06.016

    10. [10]

      LIU Zhen, WANG Bao-wei, WANG Wei-han, MENG Da-jun, LI Zhen-hua, MA Xin-bin. Impact of B2O3 loading on sulfur-resistant methanation activity of MoO3/CeO2-Al2O3 catalys[J]. CIESC J, 2016,67(9):3672-3677.  

    11. [11]

      LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. J Fuel Chem Technol, 2016,44(8):985-992.  

    12. [12]

      DA SILVA D, LETICHEVSKY S, BORGES L, APPEL L. The Ni/ZrO2 catalyst and the methanation of CO and CO2[J]. Int J Hydrogen Energy, 2012,37:8923-8928. doi: 10.1016/j.ijhydene.2012.03.020

    13. [13]

      SHARMA S, KUMAR K, CHANDNANI Y, KUMAR V, GANGWAR B, SINGHAL A, DESHPANDE P. Mechanistic insights into CO2 methanation over Ru-substituted CeO2[J]. J Phys Chem C, 2016,120(26):14101-14112. doi: 10.1021/acs.jpcc.6b03224

    14. [14]

      QIN Shao-dong, LONG Jun-ying, TIAN Da-yong, WANG Guo-gao, YANG Xia, SUN Shou-li, SUN Qi. Supported Mo-based catalysts with different carriers for methanation[J]. Ind Catal, 2014,22(10):770-774. doi: 10.3969/j.issn.1008-1143.2014.10.008

    15. [15]

      KIM M Y, HA S B, KOH D J, BYUN C, PARK E D. CO methanation over supported Mo catalysts in the presence of H2S[J]. Catal Commun, 2013,35:68-71. doi: 10.1016/j.catcom.2013.02.004

    16. [16]

      RAZZAQ R, LI C, USMAN M, SUZUKI K, ZHANG S. A highly active and stable Co4N/gamma-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)[J]. Chem Eng J, 2015,262:1090-1098. doi: 10.1016/j.cej.2014.10.073

    17. [17]

      RAZZAQ R, ZHU H W, JIANG L, MUHAMMAD U, LI C S, ZHANG S J. Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2[J]. Ind Eng Chem Res, 2013,52:2247-2256. doi: 10.1021/ie301399z

    18. [18]

      LIU J, WANG E, LV J, LI Z, WANG B, MA X, QIN S, SUN Q. Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation[J]. Fuel Process Technol, 2013,110:249-257. doi: 10.1016/j.fuproc.2013.01.003

    19. [19]

      KATTEL S, YU W, YANG X, YAN B, HUANG Y, WAN W, LIU P, CHEN J G. CO2 hydrogenation over oxide-supported PtCo catalysts:The role of the oxide support in determining the product selectivity[J]. Angew Chem Int Ed, 2016,55:7968-7973. doi: 10.1002/anie.201601661

    20. [20]

      El-SHARKAWY E A, KHDER A S, AHMED A I. Structural characterization and catalytic activity of molybdenum oxide supported zirconia catalysts[J]. Microporous Mesoporous Mater, 2007,102(1/3):128-137.  

    21. [21]

      CUI F, LI G, LI X, LUA M, LI M. Enhancement of hydrodesulfurization of 4, 6-dimethyldibenzothiophene catalyzed by CoMo catalysts supported on carbon-covered gamma-Al2O3[J]. Catal Sci Technol, 2015,5(1):549-555. doi: 10.1039/C4CY00814F

    22. [22]

      DINTER N, RUSANEN M, RAYBAUD P, KASZTELAN S, SILVA P, TOULHOAT H. Temperature-programmed reduction of unpromoted MoS2-based hydrodesulfurization catalysts:First-principles kinetic monte carlo simulations and comparison with experiments[J]. J Catal, 2010,275:117-128. doi: 10.1016/j.jcat.2010.07.020

    23. [23]

      AFANASIEV P. Calculation of MoS2 slabs morphology descriptors from transmission electron microscopy data revisited. Case study of the influence of citric acid and treatment conditions on the properties of MoS2/Al2O3[J]. Appl Catal A:Gen, 2017,529:10-19. doi: 10.1016/j.apcata.2016.10.008

    24. [24]

      LI H F, LI M F, CHU Y, LIU F, NIE H. Effect of different preparation methods of MoO3/Al2O3 catalysts on the existing states of Mo species and hydrode sulfurization activity[J]. Fuel, 2014,116:168-174. doi: 10.1016/j.fuel.2013.07.127

    25. [25]

      QIU L M, XU G T. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci, 2010,256:3413-3417. doi: 10.1016/j.apsusc.2009.12.043

    26. [26]

      LI H F, LI M F, NIE H. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous Mesoporous Mater, 2014,188:30-36. doi: 10.1016/j.micromeso.2014.01.003

    27. [27]

      NIKULSHIN P A, ISHUTENKO D I, MOZHAEV A A, MASLAKOV K I, PIMERZIN A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions[J]. J Catal, 2014,312:152-169. doi: 10.1016/j.jcat.2014.01.014

    28. [28]

      GAO D, DUAN A, ZHANG X, ZHAO Z, HONG E, LI J, WANG H. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS[J]. Appl Catal B:Environ, 2015,165:269-284. doi: 10.1016/j.apcatb.2014.10.034

    29. [29]

      HU K H, HU X G, XU Y F, PAN X Z. The effect of morphology and size on the photocatalytic properties of MoS2[J]. React Kinet Mech Catal, 2010,100(1):153-163.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    8. [8]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    15. [15]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    16. [16]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    17. [17]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    18. [18]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(14)
  • Abstract views(1663)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return