Role of coal surface functional groups in methane cracking over different chars
- Corresponding author: TAN Yi-sheng, tan@sxicc.ac.cn
Citation:
WEI Ling, WU Ying-quan, ZHAO Jian-tao, TAN Yi-sheng. Role of coal surface functional groups in methane cracking over different chars[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(6): 661-667.
XU Shan, WANG Xiao-lai, ZHAO Rui. Study on the production of hydrogen from methane[J]. Prog Chem, 2003,15(2):141-150.
BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Hydrogen production from methane pyrolytic decomposition over activated carbons[J]. J Fuel Chem Technol, 2006,34(1):66-70.
BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Hydrogen production by methane decomposition over activated carbon in a fluidized-bed reactor[J]. Nat Gas Chem Ind, 2006,31(1):1-4.
STEINBERG M. The Hy-C process (thermal decomposition of natural gas) potentially the lowest cost source of hydrogen with the least CO2 emission[J]. Energy Convers Manage, 1995,36(6/9):791-796.
POIRIER M G, SAPUNDZHIEV C. Catalytic decomposition of natural gas to hydrogen for fuel cell applications[J]. Int J Hydrogen Energy, 1997,22(4):429-433. doi: 10.1016/S0360-3199(96)00101-2
CHOUDHARY T V, SIVADINARAYANA C, CHUSUEI C C, KLINGHOFFER A, GOODMAN D W. Hydrogen production via catalytic decomposition of methane[J]. J Catal, 2001,199(1):9-18. doi: 10.1006/jcat.2000.3142
PAN Zhi-yong, SHEN Shi-kong. Hydrogen production via direct cracking of methane over Ni/SiO2 catalysts[J]. J Fuel Chem Technol, 2003,31(5):466-470.
SERBAN M, LEWIS M A, MARSHALL C L, DOCTOR R D. Hydrogen production by direct contact pyrolysis of natural gas[J]. Energy Fuels, 2003,17(3):705-713. doi: 10.1021/ef020271q
CHEN J L, LI Y D, LI Z Q, ZHANG X X. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts[J]. App Catal A:Gen, 2004,269(1/2):179-186.
BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005,33(4):426-430.
MURADOV N. CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel[J]. Energy Fuels, 1998,12(1):41-48. doi: 10.1021/ef9701145
MURADOV N. Hydrocarbon-based systems for CO2-free production of hydrogen//Proceeding of 13th World Hydrogen Energy Conference[J]. Beijing, 2000:428-433.
MURADOV N. Catalysis of methane decomposition over elemental carbon[J]. Catal Commun, 2001,2(3/4):89-94.
MURADOV N. Hydrogen via methane decomposition:An application for decarbonization of fossil fuels[J]. Int J Hydrogen Energy, 2001,26(11):1165-1175. doi: 10.1016/S0360-3199(01)00073-8
MURADOV N, VEZIROGLU T N. From hydrogen to hydrogen-carbon to hydrogen economy[J]. Int J Hydrogen Energy, 2005,30(3):225-237. doi: 10.1016/j.ijhydene.2004.03.033
BAI Z Q, CHEN H K, LI W, LI B Q. Hydrogen production by methane decomposition over coal char[J]. Int J Hydrogen Energy, 2006,31(7):899-905. doi: 10.1016/j.ijhydene.2005.08.001
SUN Z Q, WU J H, HAGHIGHI M, BROMLY J, NG E, WEE H L, WANG Y, ZHANG D K. Methane cracking over a bituminous coal char[J]. Energy Fuels, 2007,21(3):1601-1605. doi: 10.1021/ef060616v
ZHANG Y, WU J H, ZHANG D K. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz[J]. Energy Fuels, 2008,22(2):1142-1147. doi: 10.1021/ef700680d
XU Ze-xi, WU Jin-hu, WANG Yang, ZHANG Dong-ke. Methane craking over lignite char[J]. J Fuel Chem Technol, 2009,37(3):277-281.
WEI L, TAN Y S, HAN Y Z, ZHAO J T, WU J H, ZHANG D K. Hydrogen production by methane cracking over different coal chars[J]. Fuel, 2011,90(11):3473-3479. doi: 10.1016/j.fuel.2011.06.053
WEI Ling, TAN Yi-sheng, HAN Yi-zhuo, ZHAO Jian-tao. Influence of coal char on methane cracking[J]. CIESC J, 2015,66(9):3733-3738.
ZHU Zhi-pei, GAO Jin-sheng. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984, 122-129.)
LI Qing-zhao, LIN Bai-quan, ZHAO Chang-sui, WU Wei-fang. Chemical structure analysis of coal char surface based on Fourier-Transform infrared spectrometer[J]. Proc CSEE, 2011,31(32):46-52.
FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, ORFAO J J M. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999,37:1379-1389. doi: 10.1016/S0008-6223(98)00333-9
MENG Hua-ping. The catalytic effect of oxygen-containing group in coal char surface on methane decomposition reaction. Taiyuan:Taiyuan University of Technology, 2008.)
SHAN Xiao-mei, ZHU Shu-quan, ZHANG Wen-hui, LI Shu-rong, LI Shu-qin. Modification surface properties of coal based and coconut shell activated carbons by oxidation[J]. J China Univ Min Technol, 2003,32(6):729-733.
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
①: gas; ②: pressure relief valve; ③: mass flow controllers; ④: mixing chamber; ⑤: temperature controller; ⑥: quartz tube reactor; ⑦: electrically heated furnace
◇: Xiaolongtan liginite char; ○: char washed by barium hydroxide of equivatent-volume impregnation; ●: char washed by barium hydroxide of exceeding volume dipping; □: char washed by phenyl hydrazine of equivatent-volume impregnation; ■: char washed by phenyl hydrazine of exceeding volume dipping; △: char washed by hydrogen iodide of equivatent-volume impregnation; ▲: char washed by hydrogen iodide of exceeding volume dipping
a: Xiaolongtan liginite char; b: char washed by barium hydroxide; c: char washed by phenyl hydrazine; d: char washed by hydrogen iodide
(a): conversions of methane cracking; (b): hydrogen yields of methane cracking ◇: Xiaolongtan liginite char; ○: char washed by barium hydroxide of equivatent-volume impregnation; ●: char washed by barium hydroxide of exceeding volume dipping
(a): conversions of methane cracking; (b): hydrogen yields of methane cracking ◇: Xiaolongtan liginite char; □: char washed by phenyl hydrazine of equivatent-volume impregnation; ■: char washed by phenyl hydrazine of exceeding volume dipping
(a): conversions of methane cracking; (b): hydrogen yields of methane cracking ◇: Xiaolongtan liginite char; △: char washed by hydrogen iodide of equivatent-volume impregnation; ▲: char washed by hydrogen iodide of exceeding volume dipping
(a and a': Xiaolongtan coal char, b and b': coal char washed by Ba (OH)2, c and c': coal char washed by phenyl hydrazine, d and d': coal char washed by HI)