Citation: WANG Guang-jian, LI Jia-jia, WU Chun-ze, WANG Fang. Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1518-1522. shu

Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization

  • Corresponding author: WANG Guang-jian, guangjianwang@126.com
  • Received Date: 1 July 2016
    Revised Date: 18 August 2016

Figures(5)

  • A variety of TiO2-Al2O3 composite support were prepared using improved sol-gel method (SG), co-precipitation method (CP), surface precipitation (PR) and mechanical kneading method (ME), and the influence of preparation methods on their physical properties were investigated. The hydro-desulfurization activity of Co-Mo/TiO2-Al2O3-X catalysts prepared by impregnation method was studied. XRD, BET and SEM were used to characterize the composite support and the catalysts. Results show that the composite support prepared by SG method has uniform morphology with larger surface area, pore size and pore volume. And the monolayer or sub-monolayer of TiO2 existed in the γ-Al2O3. Under the reaction conditions of 3.0 MPa of hydrogen pressure, 280℃ of reaction temperature, 4 h of reaction time, 1.4 h-1 of the liquid space velocity and 600 of hydrogen to oil ratio, Co-Mo/TiO2-Al2O3 prepared by SG method has highest hydro-desulfurization activity, and the thiophene conversion rate reached 96.6%.
  • 加载中
    1. [1]

      GRZECHOWIAK J R, WERESZCZAKO-ZIELIŃSKA I, MROZIŃSKA K. HDS and HDN activity of molybdenum and nickel-molybdenum catalysts supported on alumina-titania carriers[J]. Catal Today, 2007,119(1):23-30.  

    2. [2]

      LU S, YUAN L. Preparation of meso-macroporous carbon nanotube-alumina composite monoliths and their application to the preferential oxidation of CO in hydrogen-rich gases[J]. Appl Catal B:Environ, 2012,111-112(2):492-501.

    3. [3]

      YANG Zhu-hong, LI Li-cheng, WANG Yan-fang, LIU Jin-long, FENG Xin, LU Xiao-hua. Preparation of nickel phosphide/mesoporous-TiO2 catalyst and its hydrodesulfurization performance[J]. Chin J Catal, 2012,33(3):508-517.

    4. [4]

      ELEKTOROWICZ M, HABIBI S. Sustainable waste management:Recovery of fuels from petroleum sludge[J]. Can J Civ Eng, 2005,32(1):164-169. doi: 10.1139/l04-122

    5. [5]

      PENG Hui-zuo, YANG Yun-quan, WANG Wei-yan, HE Bing, QIN Bo-hao. Preparation of TiO2-Al2O3 Composite support with high specific surface area by ultrasound-assisted Co-precipitation method[J]. Petrkchem Technol, 2011,40(7):726-731.

    6. [6]

      WEI Z, XIN Q, GUO X, SHAM E L, GRANGE P, DELMON B. Titania-modified hydrodesulphurization catalysts:I.Effect of preparation techniques on morphology and properties of TiO2-Al2O3 carrier[J]. Appl Catal, 1990,63(1):305-317. doi: 10.1016/S0166-9834(00)81721-2

    7. [7]

      CHOI J, BAN K, CHOUNG S-J, KIM J, ABIMANYU H, YOO K S. Sol-gel synthesis,characterization and photocatalytic activity of mesoporous TiO2/γ-Al2O3 granules[J]. J Sol-Gel Sci Technol, 2007,44(1):21-28. doi: 10.1007/s10971-007-1592-0

    8. [8]

      XU Ru-ren.Molecular Sieve and Porous Materials Chemistry[M].Beijing:Science Press,2004.

    9. [9]

      ZHANG Cheng, WANG Yong-lin, YANG Chun-yan, SUI Bao-kuan, YANG Gang, WANG Gang, ZHAO Guo-li. Characterization of active phase of NiMo/TiO2-Al2O3 catalyst and its performance in hydrodesulphurization reaction[J]. Ind Catal, 2012,20(5):31-35.

    10. [10]

      DAAGE M, CHIANELLI R R. Structure-Function relations in molybdenum sulfide catalysts:The "Rim-Edge" Model[J]. J Catal, 1994,149(2):414-427. doi: 10.1006/jcat.1994.1308

    11. [11]

      TOPSØE H, CLAUSEN B S, CANDIA R, WIVEL C, MOERUP S. In situ Moessbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts:Evidence for and nature of a Co-Mo-S phase[J]. J Catal (United States), 1981,68(2):433-452.

    12. [12]

    13. [13]

      WANG D, LI W, ZHANG M, TAO K. Promoting effect of fluorine on titania-supported cobalt-molybdenum hydrodesulfurization catalysts[J]. Appl Catal, 2007,317(1):105-112. doi: 10.1016/j.apcata.2006.10.020

    14. [14]

      PAUL J, PAYEN E. Vacancy formation on MoS2 hydrodesulfurization catalyst:DFT study of the mechanism[J]. J Phys Chem B, 2003,107(17):4057-4064. doi: 10.1021/jp027668f

  • 加载中
    1. [1]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    12. [12]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(0)
  • Abstract views(1398)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return