Citation: MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 449-456. shu

Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts

Figures(6)

  • A series of K promoted K/MgFeZn-HTLcs catalysts with different Mg/Fe/Zn molar ratios were prepared by means of precipitation method and impregnation method for the direct synthesis of light olefins from CO hydrogenation. The samples were characterized by N2 adsorption-desorption SEM, TG, XRD, XPS and H2-TPR measurements. The results showed that the MgFeZn-HTLcs catalyst precursors have typical lamellar structure, larger specific surface area and average pore diameter compared with Fe/Zn catalyst. The BET surface area and the average pore diameter decreased after calcination and K promotion. The bulk composition of the calcined samples was mainly metal oxide and ferrite. Fe5C2, MgCO3 and ZnO were formed in K/MgFeZn-HTLcs catalysts after reaction. However, the main phase in K/2Fe-1Zn catalyst was stabilized in ZnFe2O4. During CO hydrogenation, the prepared samples showed high C2-4= selectivity and low C5+ weight fraction compared with that of K/2Fe-1Zn sample. The product distribution was greatly improved. Over the sample K/2Mg-2Fe-1Zn, an olefin to paraffin ratio of 5.15 and the C2-4= weight olefin content of 48.56% could be obtained.
  • 加载中
    1. [1]

      TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013,3(9):2130-2149. doi: 10.1021/cs4003436

    2. [2]

      FU T J, JIANG Y H, LV J, LI Z H. Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts[J]. Fuel Process Technol, 2013,110(6):141-149.

    3. [3]

      HADNADEV-KOSTIĈ M S, VULIĈT J, MARINKOVIĈ-NEDUĈIN R P, NIKOLIĈA D, JOVIĈ B. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties[J]. J Serb Chem Soc, 2011,76(12):1661-1671. doi: 10.2298/JSC110429149H

    4. [4]

      DONG Li, YANG Xue-ping. New advances in direct production of light olefins from syngas[J]. Petrochem Technol, 2012,4(10):1201-1206.  

    5. [5]

      LIU Y, TENG B T, GUO X H, LI Y, CHANG J, TIAN L, HAO X, WANG Y, XIANG H W, XU Y Y, LI Y W. Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem, 2007,272(1/2):182-190.  

    6. [6]

      YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 Nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012,134(38):15814-15821. doi: 10.1021/ja305048p

    7. [7]

      WANG C F, PAN X L, BAO X H. Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst[J]. Chin Sci Bull, 2010,55(12):1117-1119. doi: 10.1007/s11434-010-0076-8

    8. [8]

      WANG Hu-lin, YANG Yong, WANG Hong, XIANG Hong-wei, LI Yong-wang. Effects of Zn promoter on the structure and Fischer-Tropsch performance of iron catalyst[J]. J Fuel Chem Technol, 2012,40(1):59-67.  

    9. [9]

      TORRES GALVIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012,134(39):16207-16215. doi: 10.1021/ja304958u

    10. [10]

      ZHANG J L, FAN S B, ZHAO T S, LI W H, SUN Y H. Carbon modified Fe-Mn-K catalyst for the synthesis of light olefins from CO hydrogenation[J]. React Kinet Mech Cat, 2011,102(2):437-445. doi: 10.1007/s11144-010-0275-y

    11. [11]

      WANG Gen-cun, ZHANG Kan, LIU Ping, HUI Hai-tao, LI Wen-hua, TAN Yi-sheng. Performance of Fe-Mn catalyst for preparation of light olefins in slurry bed reactor[J]. Petrochem Technol, 2012,41(11):1234-1238.  

    12. [12]

      WEI Jian, MA Xian-gang, FANG Chuan-yan, GE Qing-jie, XU Heng-yong. Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins[J]. J Fuel Chem Technol, 2014,42(7):827-832.  

    13. [13]

      ZHANG Y L, MA L L, WANG T J, LI X J. Synthesis of Ag promoted porous Fe3O4 microspheres with tunable pore size as catalysts for Fischer-Tropsch production of lower olefins[J]. Catal Commun, 2015,64:32-36. doi: 10.1016/j.catcom.2015.01.033

    14. [14]

      WANG G C, ZHANG K, LIU P, HUI H T, TAN Y S. Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. J Ind Eng Chem, 2013,19(3):961-965. doi: 10.1016/j.jiec.2012.11.017

    15. [15]

      ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem, 2010,2(9):1030-1058. doi: 10.1002/cctc.201000071

    16. [16]

      XU Long-ya, WANG Qing-xia, CAI Guang-yu, CHEN Guo-quan. Effect of support on secondary reactions of ethylene over supported Fe-MnO catalyst[J]. J Fuel Chem Technol, 1993,21(2):121-126.  

    17. [17]

      TSAI Y T, MO X H, CAMPOS A, GOODWIN JR J G, SPIVEY J J. Hydrotalcite supported Co catalysts for CO hydrogenation[J]. Appl Catal A: Gen, 2011,396(1/2):91-100.  

    18. [18]

      GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014,30(6):1155-1162.

    19. [19]

      DI FRONZO A, PIROLA C, COMAZZI A, GALLI F, BIANCHI C L, DI MICHELE A, VIVANI R, NOCCHETTI M, BASTIANINI M, BOFFITO D C. Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process[J]. Fuel, 2014,119(3):62-69.  

    20. [20]

      DíEZ V K, APESTEGUÍA C R, DI COSIMO J I. Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions[J]. J Catal, 2003,215(2):220-233. doi: 10.1016/S0021-9517(03)00010-1

    21. [21]

      XU Long-ya, WANG Qing-xia, YANG Li, CAI Guang-yu, WANG Kai-li. Performance of IIA metal oxide supported Fe-MnO catalyst for production of light alkenes via syngas[J]. J Fuel Chem Technol, 1995,23(2):125-130.  

    22. [22]

      DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behavior[J]. Chem Soc Rev, 2008,37(12):2758-2781. doi: 10.1039/b805427d

    23. [23]

      HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H J. The mechanism of potassium promoter: Enhancing the stability of active surfaces[J]. Angew Chem Int Ed, 2011,50(32):7403-7406. doi: 10.1002/anie.v50.32

    24. [24]

      CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite-type anionic clays: Preparation, properties and applications[J]. Catal Today, 1991,11(2):173-301. doi: 10.1016/0920-5861(91)80068-K

    25. [25]

      EVANS D G, SLADE R C T. Structural aspects of layered double hydroxides[J]. Struct Bond, 2006,119:1-87.  

    26. [26]

      XIE Xian-mei. Study on the preparation, performances and application of hydrotalcite-like-compounds[D]. Taiyuan: Taiyuan University of Technology, 2006. 

    27. [27]

      TOSHIYUKI H, YASUMASA Y, KATSUNORI K, ATSUMU T. Decarbonation behavior of Mg-A1-CO3 hydrotalcite-like compounds during heat treatment[J]. Clay Clay Miner, 1995,43(4):427-432. doi: 10.1346/CCMN

    28. [28]

      VALENTE J S, PRINCE J, MAUBERT A M, LARTUNDO-ROJAS L, ANGEL P D, FERRAT G, HERNANDEZ J G, LOPEZ-SALINAS E. Physicochemical study of nanocapsular layered double hydroxides evolution[J]. J Phys Chem C, 2009,113(14):5547-5555. doi: 10.1021/jp810293y

    29. [29]

      ZHAO M Q, ZHANG Q, ZHANG W, HUANG J Q, ZHANG Y H, SU D S, WEI F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. J Am Chem Soc, 2010,132(42):14739-14741. doi: 10.1021/ja106421g

    30. [30]

      LI P, JIANG E Y, BAI H L. Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering[J]. J Phys D: Appl Phys, 2011,44(7):75003-75007. doi: 10.1088/0022-3727/44/7/075003

    31. [31]

      SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286(2):111-123.  

    32. [32]

      YANG Yan-nan, ZHONG Bing, PENG Shao-yi, WANG Qin, CHEN Yi-long, XU Bin-fu. A Mossbauer spectrum study on Fe/Zn catalysts for Fischer-Tropsch synthesis[J]. J Mol Catal, 1993,7(6):425-431.  

    33. [33]

      LIU X M, LU G Q, YAN Z F, BELTRAMINI J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res, 2003,42(25):6518-6530. doi: 10.1021/ie020979s

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(1)
  • Abstract views(810)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return