Citation: ZHOU Guang-lin, CHEN Sheng, LI Qin, JIANG Wei-li, ZHOU Hong-jun, GONG Xue-cheng. Impact of Ni content on the structure and adsorption desulfurization performance of Ni/ZnO-TiO2 adsorbent[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 987-992. shu

Impact of Ni content on the structure and adsorption desulfurization performance of Ni/ZnO-TiO2 adsorbent

  • Corresponding author: ZHOU Guang-lin, zhouguanglin2@163.com
  • Received Date: 9 April 2019
    Revised Date: 21 June 2019

Figures(6)

  • Using ZnO-TiO2 as a carrier support, Ni/ZnO-TiO2 gasoline desulfurization adsorbents with different Ni contents were prepared by equal volume impregnation method and characterized by X-ray diffraction (XRD), Mercury intrusion porosimetry, H2-temperature-programmed desorption(H2-TPD) and H2-temperature-programmed reduction (H2-TPR). Meanwhile, the desulfurization performance of the Ni/ZnO-TiO2 adsorbents were evaluated using FCC light gasoline in a fixed bed reactor. The results show that proper increase of Ni content has little effect on the specific surface area, internal pore distribution and particle strength of the adsorbent, and can increase the Ni0 species with desulfurization activity and promote the desulfurization activity of the adsorbent. When the content of Ni in the adsorbent is too much, the internal pore distribution of the adsorbent changes, and the specific surface area and particle strength of the adsorbent are greatly reduced, which is extremely detrimental to the desulfurization activity of the adsorbent. When the Ni content is 4.45%, having the best desulfurization performance, can reduce the total sulfur content of 3×10-4 in FCC light gasoline to below 5×10-6, and maintain the desulfurization time up to 152 h, and the breakthrough sulfur capacity is 11.24% (112.4 mg S/g adsorbent). And the olefin content of FCC light gasoline after desulfurization changes little.
  • 加载中
    1. [1]

      QIAN Bo-zhang. Production process and technological progress of clean gas and diesel oil(Ⅰ)[J]. Lubes Fuels, 2015,25(5):1-5.  

    2. [2]

      KHARE, GYANESH P, BARTLESVILL E. Desulfurization process and novel bimetallic sorbent systems for same: US, 6274533[P]. 2001-8-14.

    3. [3]

      HUANG L C, WANG G F, QIN Z F, DONG M, DU M X, GE H, LI X K, ZHAO Y D, ZHANG J, HU T D, WANG J G. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO[J]. Appl Catal B:Environ, 2011,106(1):26-38.  

    4. [4]

      ZHAO L, CHEN Y, GAO J S, CHEN Y. Desulfurization mechanism of FCC gasoline:A review[J]. Front Chem Sci Eng, 2010,4(3):314-321. doi: 10.1007/s11705-009-0271-9

    5. [5]

      HUANG L X, WANG G F, QIN Z F, DU M X, DONG M, GE H, WU Z W, ZHAO Y D, MA C Y, HU T D, WANG J G. A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO[J]. Catal Commun, 2010,11(7):592-596. doi: 10.1016/j.catcom.2010.01.001

    6. [6]

      RYZHIKOV A, BEZVERKHYY I, BELLAT J P. Reactive adsorption of thiophene on Ni/ZnO:Role of hydrogen pretreatment and nature of the rate determining step[J]. Appl Catal B:Environ, 2008,84(3):766-772.  

    7. [7]

      PETZOLD F G, JASINSKI J, CLARK E L, KIM J H, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today, 2012,198(1):219-227.  

    8. [8]

      ZHANG Y L, YANG Y X, HAN H X, YANG M, WANG L, ZHANG Y N, JANG Z X, LI C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO:The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B:Environ, 2012,119/120:13-19. doi: 10.1016/j.apcatb.2012.02.004

    9. [9]

      HUSSAIN A H M S, TATARCHUK B J. Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx-Al2O3 and Ag/TiOx-SiO2 adsorbents[J]. Fuel, 2013,107(9):465-473.  

    10. [10]

      RANA M S, MAITY S K, ANCHEYTA J, DHAR G M, RAO T S R P. TiO2-SiO2 supported hydrotreating catalysts:physico-chemical characterization and activities[J]. Appl Catal A:Gen, 2003,253(1):165-176. doi: 10.1016/S0926-860X(03)00502-7

    11. [11]

      STRANICK M A, HOUALLA M, HERCULES D M. The influence of TiO2 on the speciation and hydrogenation activity of Co/Al2O3catalysts[J]. J Catal, 1990,125(1):214-226.  

    12. [12]

      DENG Cun, DUAN Lian-yun, XU Xian-ping, XIE You-chang. Preparation of composite carrier TiO2/SiO2 by gas adsorption and dispersion of MoO3 on its surface[J]. Chin J Catal, 1993,14(4):281-286.  

    13. [13]

      ROH H S, JUN K W, DONG W S, CHANG J S, PARK S E, JOE Y I. Highly active and stable Ni/Ce-ZrO2, catalyst for H2, production from methane[J]. J Mol Catal A:Chem, 2002,181(1):137-142.  

    14. [14]

      ULLAH R, BAI P, WU P P, ETIM U J, ZHANG J Q, HAN D Z, SUBHAN F, ULLAH S, ROOD M J, YAN Z F. Superior performance of freeze-dried Ni/ZnO-Al2O3 adsorbent in the ultra-deep desulfurization of high sulfur model gasoline[J]. Fuel Process Technol, 2016,156:505-514.  

    15. [15]

      GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHI M M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A:Gen, 2016,514:182-191. doi: 10.1016/j.apcata.2015.12.025

    16. [16]

      XIONG Jun, CHEN Ji-xiang, ZHANG Ji-yan. Influence of Ni loading on properties of Ni/TiO2 catalyst for hydrogenation of o-chloronitrobenzene to o-chloroaniline[J]. Chin J Catal, 2006,27(7):579-584. doi: 10.3321/j.issn:0253-9837.2006.07.011

    17. [17]

      TANG Ming-xing, LI Xue-kuan, LÜ Zhan-jun, GE Hui, ZHOU Li-gong. Ultra-deep hydrodesulfurization of benzene over Ni/ZnO catalyst[J]. J Fuel Chem Technol, 2009,37(6):707-712. doi: 10.3969/j.issn.0253-2409.2009.06.012 

    18. [18]

      FERNANDES D M, SCOFIELD C F, NETO A A, CARDOSO M J B, ZOTIN J L, ZOTIN F M Z. The hydrogen adsorption capacity of commercial Pd/Rh and Pt/Rh automotive catalysts and its relationship to their activity[J]. Chem Eng J, 2012,189/190:62-67. doi: 10.1016/j.cej.2012.02.024

    19. [19]

      YANG Xia, TIAN Da-yong, SUN Shou-li, SUN Qi. Influence of zirconia-alumina composite on catalytic performance of nickel-based catalysts for methanation[J]. Chem Ind Eng Prog, 2014,33(3):673-678.  

    20. [20]

      VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006,177(7/8):803-811.  

    21. [21]

      ISHIKAWA H, KONDO J N, DOMEN K. Hydrogen adsorption on Ru/ZrO2 studied by FT-IR[J]. J Phys Chem B, 1999,103(16):3229-3234. doi: 10.1021/jp9842852

    22. [22]

      WANG D H, QIAN W H, ISHIHARA A, KABE T. Elucidation of sulfidation state and hydrodesulfurization mechanism on TiO2 catalysts using 35S radioisotope tracer methods[J]. J Catal, 2001,203(2):322-328. doi: 10.1006/jcat.2001.3349

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    3. [3]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    4. [4]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    5. [5]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    6. [6]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    7. [7]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    10. [10]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    13. [13]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Hongyu TangDongming LiuJinfu HuangLiang ZhangYang TangBin HuangYanwei LiShunhua XiaoYiling SunRenheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

Metrics
  • PDF Downloads(11)
  • Abstract views(754)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return